• Title/Summary/Keyword: RMS error

Search Result 393, Processing Time 0.035 seconds

Analysis of 60 GHz Band Indor Wireless Channels with Channel Configurations

  • Ji-Hoon Park;Yun
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.30-33
    • /
    • 1998
  • In this paper, 60 GHz indoor broadband wireless channels are measured with various configurations in a typical coffice environment. Mesurements are taken at nine positions of the room and the base-station antenna is placed either at the center or at an edge of the measurement room, and the remote-station antenna is either sharp beam or broad beam type. The rms delay spread(RDS) and normalized received power (NRP) are estimated from the measurements. Bit error rate simulations are performed using impulse responses for two measurement positions with QPSK/DQPSK OFDM modulation. Using sharp beam antenna results in superior performances than using broad beam antenna in terms of both bit error rates (BER) and NRP penalty. Also, placing the bese-station antenna at the center is superior to placing it at an edge in terms of BER and NRP.

  • PDF

ON LEARNING OF CNAC FOR MANIPULATOR CONTROL

  • Hwang, Heon;Choi, Dong-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.653-662
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller (CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d.o.f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process. A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF

ON LEARNING OF CMAC FOR MANIPULATOR CONTROL

  • Choe, Dong-Yeop;Hwang, Hyeon
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.93-115
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller(CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d. o. f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process; A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF

Design of a Coordinate-Transformation Extended Robust Kalman Filter for Incoming Ballistic Missile Tracking Systems (접근 탄도미사일 추적시스템을 위한 좌표변환 확장강인칼만필터 설계)

  • Shin Jong-Gu;Lee Tae Hoon;Yoon Tae-Sung;Choi Yoon-Ho;Park Jin Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.22-30
    • /
    • 2003
  • A Coordinate-Transformation Extended Robust Kalman Filter (CERKF) designed in the Krein space is proposed, and then applied to a nonlinear incoming ballistic missile tracking system with parameter uncertainties. First, the Extended Robust Kalman filter (ERKF) is proposed to handle the nonlinearity of measurement equation which occurs whenever the polar coordinate system is transformed into the Cartesian coordinate system. Moreover, linearization error inevitably occurs and deteriorates the tracking performance, which is considerably reduced by the proposed CERKF. Through the simulation results, we show that the proposed CERKF, which uses the measurement coordinate system, has less RMS error than the previous ERKF which is designed in the Krein space using the Cartesian system. We also verify that the robustness and the stability of the proposed filter are guaranteed in two radars: the phased way radar and the scanning radar

Combined GPS/BeiDou Positioning Performance in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.149-154
    • /
    • 2014
  • The BeiDou is a satellite-based positioning and navigation system, which is under construction by the China Satellite Navigation Office. Until the June of 2014, the constellation of BeiDou navigation satellite system consists of 14 satellites including five geostationary earth orbit (GEO), five inclined geosynchronous earth orbit (IGSO) and four medium earth orbit (MEO). In this paper, we present the positioning results using BeiDou B1 code measurements obtained from three GNSS reference stations (BHAO, SKMA, MKPO). Combined Beidou/GPS positioning results are also compared to BeiDou and GPS only. BeiDou-only positioning errors for the east-west and north-south direction had less than 2 meter with root mean square (RMS) value. However, the positioning error for the up-down direction had larger than 10 meter at a 95% confidence level. Our results also suggest that the position precision is improved by combined BeiDou/GPS compared to BeiDou-only.

A New Approach for Accurate RTL Power Macro-Modeling

  • Kawauchi, Hirofumi;Taniguchi, Ittetsu;Fukui, Masahiro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • Register transfer level power macromodeling is well known as a promising technique for accurate and efficient power estimation. This paper proposes effective approaches based on the tablebased method for the RTL power macro-modeling. The new parameter SD, which characterizes the distribution of switching activities for each gate in the circuit, is one of the contributions. The new parameter SD has strong correlation with power consumption. We also propose an accurate table reference method considering the circuit characteristics. The table reference method is applicable for every table-based method and outputs more accurate power value. The experimental results show that the combination of the proposed methods reduces max error 30.36% in the best case, comparing conventional methods. The RMS error is also improved 1.70% in the best case.

Optimizing the Cobalt Deposition Condition using the Experiment Design (실험계획법을 이용한 대구경용 코발트 박막의 스퍼터 조건 최적화)

  • Seong, Hwee-Cheong;Song, Oh-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.224-230
    • /
    • 2002
  • The statistical experiment method is employed to optimize the deposition condition of Co film with DC magnetron sputtering process. The statistical treatment results showed the significance value below 0.05, low RMS error and R-sq value close to 1, which implied that our experiment and design were very reliable. We found that the sheet resistance decreased to -1.83Ω/$\square$ with the deposition temperature, increased to 11.17Ω/$\square$ with the deposition pressure, and decreased into -0.65Ω/$\square$ with the DC power. We also confirmed that the sheet resistance uniformity was mainly influenced by the deposition temperature as it decreased -4.04% at the temperature range of 25$\^{C}$∼147$\^{C}$. Finally, we report that the optimum condition of Co film using our statistical method of design of experiment is the deposition temperature of 25$\^{C}$, the deposition pressure of 12mTorr, and the DC power of 1500W.

Optimization of 30 cm Lightweight Mirror (30 cm 급 반사경 경량화 최적 설계)

  • Kim, Bong-Ho;Lee, Jong-Ung;Moon, Il-Kwon;Yang, Ho-Soon;Kihm, Hag-Yong;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.5
    • /
    • pp.214-223
    • /
    • 2010
  • Optimization of a 30 cm lightweight mirror was proposed with the best optical performance under various loads of gravity and thermal loads with proper boundary conditions. A pattern for a lightweight mirror was generated based on the best optical performance combined with ease of manufacturing for proper design parameters of physical properties of face sheet, back sheet, rib, and web. Evaluation of the optical performances of a telescope mirror was obtained by using the finite element analysis program, NX I-DEAS. Surface errors, individual aberration terms, such as piston, tilts, focus and other aberrations were calculated by using Zernike polynomials. The proposed telescope mirror meets well the opto-mechanical design consideration of RMS surface error less than 16 nm.

An Analysis on the Long-Term Variation of the GPS Broadcast Ephemeris Errors (GPS 방송궤도력 오차의 장기간 변화 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.421-428
    • /
    • 2014
  • GPS satellite positions can be obtained from the navigation message transmitted from the GPS satellite. In this paper, the accuracy of broadcast orbit and clock are analyzed by comparing with the NGA precise ephemeris. For analyzing global and local orbit errors in 2004 to 2013, GPS satellite visibilities are calculated in Korea. Local RMS of 3D orbit error and SISRE are 4 cm and 3 cm less than global RMS of 3D orbit errors and SISRE. Orbit and clock errors are calculated for each GPS satellite Block for 10 years. SISRE of Block IIA satellites are 2.8 times greater than Block IIF satellites. The correlation between orbit errors and shadow condition is analyzed. The orbit errors in shadow is 2.1% higher than that in sunlight. Correlation analysis between the orbit errors and solar/geomagnetic index shows that orbit errors has a high correlation with from 2004 to 2008. However, the correlation became low since 2009.

Development and validation of a computational multibody model of the elbow joint

  • Rahman, Munsur;Cil, Akin;Johnson, Michael;Lu, Yunkai;Guess, Trent M.
    • Advances in biomechanics and applications
    • /
    • v.1 no.3
    • /
    • pp.169-185
    • /
    • 2014
  • Computational multibody models of the elbow can provide a versatile tool to study joint mechanics, cartilage loading, ligament function and the effects of joint trauma and orthopaedic repair. An efficiently developed computational model can assist surgeons and other investigators in the design and evaluation of treatments for elbow injuries, and contribute to improvements in patient care. The purpose of this study was to develop an anatomically correct elbow joint model and validate the model against experimental data. The elbow model was constrained by multiple bundles of non-linear ligaments, three-dimensional deformable contacts between articulating geometries, and applied external loads. The developed anatomical computational models of the joint can then be incorporated into neuro-musculoskeletal models within a multibody framework. In the approach presented here, volume images of two cadaver elbows were generated by computed tomography (CT) and one elbow by magnetic resonance imaging (MRI) to construct the three-dimensional bone geometries for the model. The ligaments and triceps tendon were represented with non-linear spring-damper elements as a function of stiffness, ligament length and ligament zero-load length. Articular cartilage was represented as uniform thickness solids that allowed prediction of compliant contact forces. As a final step, the subject specific model was validated by comparing predicted kinematics and triceps tendon forces to experimentally obtained data of the identically loaded cadaver elbow. The maximum root mean square (RMS) error between the predicted and measured kinematics during the complete testing cycle was 4.9 mm medial-lateral translational of the radius relative to the humerus (for Specimen 2 in this study) and 5.30 internal-external rotation of the radius relative to the humerus (for Specimen 3 in this study). The maximum RMS error for triceps tendon force was 7.6 N (for Specimen 3).