• Title/Summary/Keyword: RIE(reactive ion etching)

Search Result 181, Processing Time 0.044 seconds

Selective etching characteristics of ITO/semiconductor and ITO/BaTiO3 structures by reactive ion ethcing (Reactive Ion Etching에 의한 ITO/반도체 및 ITO/BaTiO3 구조의 선택적 에칭 특성)

  • Han, Il-Ki;Lee, Yun-Hi;Kim, Hwe-Jong;Lee, Seok;Oh, Myung-Hwan;Lee, Jung-Il;Kim, Sun-Ho;Kang, Kwang-Nham;Park, Hong-Lee
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.152-158
    • /
    • 1995
  • Eteching characteristics of the Indium Tin Oxide (ITO), which is transparent conductor, was investigated with CH4/H2 and Ar as etching gases for the Reactive Ion Etching (RIE). With CH4/H2 for the etching gas, the highly selective etching characteristics for the ITO on GaAs was obtained. It was examined that the dominant etching parameter for the selective etchning of ITO on GaAs structure was the chamber pressure. But, the etching selectivity for ITO on InP was poor eventhough we tried systematic etching. RIE etching conditins using CH4/H2 gas was limited due to the formation of polymer on the substrates. In the case of Ar gas for the reactive gas, the selectivity of ITO on BaTiO3 was above 10. The etch rete of ITO was more sensitive to the etching parameters than that of BaTiO3, which was almost constant with different etching parameters.

  • PDF

Multi-crystalline Silicon Solar Cell with Reactive Ion Etching Texturization

  • Park, Seok Gi;Kang, Min Gu;Lee, Jeong In;Song, Hee-eun;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.419-419
    • /
    • 2016
  • High efficiency silicon solar cell requires the textured front surface to reduce reflectance and to improve the light trapping. In case of mono-crystalline silicon solar cell, wet etching with alkaline solution is widespread. However, the alkali texturing methods are ineffective in case of multi-crystalline silicon wafer due to grain boundary of random crystallographic orientation. The acid texturing method is generally used in multi-crystalline silicon wafer to reduce the surface reflectance. However the acid textured solar cell gives low short-circuit current due to high reflectivity while it improves the open-circuit voltage. To reduce the reflectivity of multi-crystalline silicon wafer, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE experimental condition with change of RF power (100W, 150W, 200W, 250W, 300W). During experiment, the gas ratio of SF6 and O2 was fixed as 30:10.

  • PDF

Study of Low Reflectance and RF Frequency by Rie Surface Texture Process in Multi Crystall Silicon Solar Cells (공정가스와 RF 주파수에 따른 웨이퍼 표면 텍스쳐 처리 공정에서 저반사율에 관한 연구)

  • Yun, Myoung-Soo;Hyun, Deoc-Hwan;Jin, Beop-Jong;Choi, Jong-Young;Kim, Joung-Sik;Kang, Hyoung-Dong;Yi, Jun-Sin;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.114-120
    • /
    • 2010
  • Conventional surface texturing in crystalline silicon solar cell have been use wet texturing by Alkali or Acid solution. But conventional wet texturing has the serious issue of wafer breakage by large consumption of wafer in wet solution and can not obtain the reflectance below 10% in multi crystalline silicon. Therefore it is focusing on RIE texturing, one method of dry etching. We developed large scale plasma RIE (Reactive Ion Etching) equipment which can accommodate 144 wafers (125 mm) in tray in order to provide surface texturing on the silicon wafer surface. Reflectance was controllable from 3% to 20% in crystalline silicon depending on the texture shape and height. We have achieved excellent reflectance below 4% on the weighted average (300~1,100 nm) in multi crystalline silicon using plasma texturing with gas mixture ratio such as $SF_6$, $Cl_2$, and $O_2$. The texture shape and height on the silicon wafer surface have an effect on gas chemistry, etching time, RF frequency, and so on. Excellent conversion efficiency of 16.1% is obtained in multi crystalline silicon by RIE process. In order to know the influence of RF frequency with 2 MHz and 13.56 MHz, texturing shape and conversion efficiency are compared and discussed mutually using RIE technology.

Reactive Ion Etching and Magnetically Enhanced Reactive Ion Etching Process of Low-K Methylsilsequioxane Insulator Film using $CF_4$ and $O_2$ ($CF_4$$O_2$를 이용한 저유전율 물질인 Methylsilsequioxane의 RIE와 MERIE 공정)

  • Jung, Do-Hyun;Lee, Yong-Soo;Lee, Kil-Hun;Kim, Kwang-Hun;Lee, Hee-Woo;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1491-1493
    • /
    • 2000
  • Continuing improvement of microprocessor performance involves in the device size. This allow greater device speed, an increase in device packing density, and an increase in the number of functions that can reside on a single chip. However this has led to propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance(RC) coupling become significant due to increased wiring capacitance, especially interline capacitance between the metal lines on the same metal level. So, MSSQ which has the permittivity between 2.5-3.2 is used to prevent from these problems. For pattering MSSQ(Methylsilsequioxane), we use RIE(Reactive Ion Etching) and MERIE(Magnetically enhanced Reactive Ion Etching) which could provide good anisotropic etching. In this study, we optimized the flow rate of $CF_{4}/O_2$ gas, RF power to obtain the best etching rate and roughness and also analyzed the etching result using $\alpha$-step profilemeter, SEM, infrared spectrum and AFM.

  • PDF

Incipient Fault Detection of Reactive Ion Etching Process

  • Hong, Sang-Jeen;Park, Jae-Hyun;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.262-271
    • /
    • 2005
  • In order to achieve timely and accurate fault detection of plasma etching process, neural network based time series modeling has been applied to reactive ion etching (RIE) using two different in-situ plasma-monitoring sensors called optical emission spectroscopy (OES) and residual gas analyzer (RGA). Four different subsystems of RIE (such as RF power, chamber pressure, and two gas flows) were considered as potential sources of fault, and multiple degrees of faults were tested. OES and RGA data were simultaneously collected while the etching of benzocyclobutene (BCB) in a $SF_6/O_2$ plasma was taking place. To simulate established TSNNs as incipient fault detectors, each TSNN was trained to learn the parameters at t, t+T, ... , and t+4T. This prediction scheme could effectively compensate run-time-delay (RTD) caused by data preprocessing and computation. Satisfying results are presented in this paper, and it turned out that OES is more sensitive to RF power and RGA is to chamber pressure and gas flows. Therefore, the combination of these two sensors is recommended for better fault detection, and they show a potential to the applications of not only incipient fault detection but also incipient real-time diagnosis.

Influence of Crystalline Si Solar Cell by Rie Surface Texturing (RIE 표면 텍스쳐링 모양에 따른 결정질 실리콘 태양전지의 영향)

  • Park, In-Gyu;Yun, Myoung-Soo;Hyun, Deoc-Hwan;Jin, Beop-Jong;Choi, Jong-Yong;Kim, Joung-Sik;Kang, Hyoung-Dong;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • We fabricated a plasma texturing for multi-crystalline silicon cells using reactive ion etching (RIE). Multi-crystalline Si cells have not benefited from the cost-effective wet-chemical texturing processes that reduce front surface reflectance on single-crystal wafers. Elimination of plasma damage has been achieved while keeping front reflectance to extremely low levels. We will discuss reflectance, quantum efficiency and conversion efficiency for multi-crystalline Si solar cell by each RIE process conditions.

Fabrication of a silicon pressure sensor for measuring low pressure using ICP-RIE (ICP-RIE를 이용한 저압용 실리콘 압력센서 제작)

  • Lee, Young-Tae;Takao, Hidekuni;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • In this paper, we fabricated piezoresistive pressure sensor with dry etching technology which used ICP-RIE (inductively coupled plasma reactive ion etching) and etching delay technology which used SOI (silicon-on-insulator). Structure of the fabricated pressure sensor shows a square diaphragm connected to a frame which was vertically fabricated by dry etching process and a single-element four-terminal gauge arranged at diaphragm edge. Sensitivity of the fabricated sensor was about 3.5 mV/V kPa at 1 kPa full-scale. Measurable resolution of the sensor was not exceeding 20 Pa. The nonlinearity of the fabricated pressure sensor was less than 0.5 %F.S.O. at 1 kPa full-scale.

Neural Network-based Time Series Modeling of Optical Emission Spectroscopy Data for Fault Prediction in Reactive Ion Etching

  • Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.131-135
    • /
    • 2023
  • Neural network-based time series models called time series neural networks (TSNNs) are trained by the error backpropagation algorithm and used to predict process shifts of parameters such as gas flow, RF power, and chamber pressure in reactive ion etching (RIE). The training data consists of process conditions, as well as principal components (PCs) of optical emission spectroscopy (OES) data collected in-situ. Data are generated during the etching of benzocyclobutene (BCB) in a SF6/O2 plasma. Combinations of baseline and faulty responses for each process parameter are simulated, and a moving average of TSNN predictions successfully identifies process shifts in the recipe parameters for various degrees of faults.

  • PDF

Oxygen Plasma Characterization Analysis for Plasma Etch Process

  • Park, Jin-Su;Hong, Sang-Jeen
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.29-31
    • /
    • 2007
  • This paper is devoted to a study of the characterization of the plasma state. For the purpose of monitoring plasma condition, we experiment on reactive ion etching (RIE) process. Without actual etch process, generated oxygen plasma, measurement of plasma emission intensity. Changing plasma process parameters, oxygen flow, RF power and chamber pressure have controlled. Using the optical emission spectroscopy (OES), we conform to the unique oxygen wavelength (777nm), the most powerful intensity region of the designated range. Increase of RF power and chamber pressure, emission intensity is increased. oxygen flow is not affect to emission intensity.