• 제목/요약/키워드: RIE(reactive ion etching)

검색결과 181건 처리시간 0.027초

Reactive Ion Etching에 의한 ITO/반도체 및 ITO/BaTiO3 구조의 선택적 에칭 특성 (Selective etching characteristics of ITO/semiconductor and ITO/BaTiO3 structures by reactive ion ethcing)

  • 한일기;이윤희;김회종;이석;오명환;이정일;김선호;강광남;박홍이
    • 전자공학회논문지A
    • /
    • 제32A권1호
    • /
    • pp.152-158
    • /
    • 1995
  • Eteching characteristics of the Indium Tin Oxide (ITO), which is transparent conductor, was investigated with CH4/H2 and Ar as etching gases for the Reactive Ion Etching (RIE). With CH4/H2 for the etching gas, the highly selective etching characteristics for the ITO on GaAs was obtained. It was examined that the dominant etching parameter for the selective etchning of ITO on GaAs structure was the chamber pressure. But, the etching selectivity for ITO on InP was poor eventhough we tried systematic etching. RIE etching conditins using CH4/H2 gas was limited due to the formation of polymer on the substrates. In the case of Ar gas for the reactive gas, the selectivity of ITO on BaTiO3 was above 10. The etch rete of ITO was more sensitive to the etching parameters than that of BaTiO3, which was almost constant with different etching parameters.

  • PDF

Multi-crystalline Silicon Solar Cell with Reactive Ion Etching Texturization

  • Park, Seok Gi;Kang, Min Gu;Lee, Jeong In;Song, Hee-eun;Chang, Hyo Sik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.419-419
    • /
    • 2016
  • High efficiency silicon solar cell requires the textured front surface to reduce reflectance and to improve the light trapping. In case of mono-crystalline silicon solar cell, wet etching with alkaline solution is widespread. However, the alkali texturing methods are ineffective in case of multi-crystalline silicon wafer due to grain boundary of random crystallographic orientation. The acid texturing method is generally used in multi-crystalline silicon wafer to reduce the surface reflectance. However the acid textured solar cell gives low short-circuit current due to high reflectivity while it improves the open-circuit voltage. To reduce the reflectivity of multi-crystalline silicon wafer, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE experimental condition with change of RF power (100W, 150W, 200W, 250W, 300W). During experiment, the gas ratio of SF6 and O2 was fixed as 30:10.

  • PDF

공정가스와 RF 주파수에 따른 웨이퍼 표면 텍스쳐 처리 공정에서 저반사율에 관한 연구 (Study of Low Reflectance and RF Frequency by Rie Surface Texture Process in Multi Crystall Silicon Solar Cells)

  • 윤명수;현덕환;진법종;최종용;김정식;강형동;이준신;권기청
    • 한국진공학회지
    • /
    • 제19권2호
    • /
    • pp.114-120
    • /
    • 2010
  • 일반적으로 결정질 실리콘 태양전지에서 표면에 텍스쳐링(texturing)하는 것은 알칼리 또는 산성 같은 화학용액을 사용하고 있다. 그러나 실리콘 부족으로 실리콘의 양의 감소로 인하여 웨이퍼 두께가 감소하고 있는 추세에 일반적으로 사용하고 있는 습식 텍스쳐링 방법에서 화학용액에 의한 많은 양의 실리콘이 소모되고 있어 웨이퍼의 파손이 심각한 문제에 직면하고 있다. 그리하여 습식 텍스쳐링 방법보다는 플라즈마로 텍스쳐링할 수 있는 건식 텍스쳐링 방법인 RIE (reactive ion etching) 기법이 대두되고 있다. 그리고 습식 텍스쳐링으로는 결정질 실리콘 태양전지의 반사율을 10% 이하로는 낮출 수가 없다. 다결정 실리콘 웨이퍼 표면에 텍스쳐링을 하기 위하여 125 mm 웨이퍼 144개를 수용할 수 있는 대규모 플라즈마 RIE 장비를 개발하였다. 반사율을 4% 이하로 낮추기 위하여 공정가스는 $Cl_2$, $SF_6$, $O_2$를 기반으로 RIE 텍스쳐링을 하였고 텍스쳐링의 모양은 공정가스, 공정시간, RF 주파수 등에 의해 조절이 가능하였다. 본 연구에서 RIE 공정을 통하여 16.1%의 변환효율을 얻었으며, RF 주파수가 텍스쳐링의 모양에 미치는 영향을 살펴보았다.

$CF_4$$O_2$를 이용한 저유전율 물질인 Methylsilsequioxane의 RIE와 MERIE 공정 (Reactive Ion Etching and Magnetically Enhanced Reactive Ion Etching Process of Low-K Methylsilsequioxane Insulator Film using $CF_4$ and $O_2$)

  • 정도현;이용수;이길헌;김광훈;이희우;최종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1491-1493
    • /
    • 2000
  • Continuing improvement of microprocessor performance involves in the device size. This allow greater device speed, an increase in device packing density, and an increase in the number of functions that can reside on a single chip. However this has led to propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance(RC) coupling become significant due to increased wiring capacitance, especially interline capacitance between the metal lines on the same metal level. So, MSSQ which has the permittivity between 2.5-3.2 is used to prevent from these problems. For pattering MSSQ(Methylsilsequioxane), we use RIE(Reactive Ion Etching) and MERIE(Magnetically enhanced Reactive Ion Etching) which could provide good anisotropic etching. In this study, we optimized the flow rate of $CF_{4}/O_2$ gas, RF power to obtain the best etching rate and roughness and also analyzed the etching result using $\alpha$-step profilemeter, SEM, infrared spectrum and AFM.

  • PDF

Incipient Fault Detection of Reactive Ion Etching Process

  • Hong, Sang-Jeen;Park, Jae-Hyun;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권6호
    • /
    • pp.262-271
    • /
    • 2005
  • In order to achieve timely and accurate fault detection of plasma etching process, neural network based time series modeling has been applied to reactive ion etching (RIE) using two different in-situ plasma-monitoring sensors called optical emission spectroscopy (OES) and residual gas analyzer (RGA). Four different subsystems of RIE (such as RF power, chamber pressure, and two gas flows) were considered as potential sources of fault, and multiple degrees of faults were tested. OES and RGA data were simultaneously collected while the etching of benzocyclobutene (BCB) in a $SF_6/O_2$ plasma was taking place. To simulate established TSNNs as incipient fault detectors, each TSNN was trained to learn the parameters at t, t+T, ... , and t+4T. This prediction scheme could effectively compensate run-time-delay (RTD) caused by data preprocessing and computation. Satisfying results are presented in this paper, and it turned out that OES is more sensitive to RF power and RGA is to chamber pressure and gas flows. Therefore, the combination of these two sensors is recommended for better fault detection, and they show a potential to the applications of not only incipient fault detection but also incipient real-time diagnosis.

RIE 표면 텍스쳐링 모양에 따른 결정질 실리콘 태양전지의 영향 (Influence of Crystalline Si Solar Cell by Rie Surface Texturing)

  • 박인규;윤명수;현덕환;진법종;최종용;김정식;강형동;권기청
    • 한국진공학회지
    • /
    • 제19권4호
    • /
    • pp.314-318
    • /
    • 2010
  • 다결정 실리콘 웨이퍼 표면에 대면적 reactive ion etching (RIE) 장비로 표면 텍스쳐를 형성한 뒤 태양전지를 제작하였다. 웨이퍼 표면에 텍스쳐를 형성하는 것은 광학적 손실을 줄이기 위해 일반적으로 사용되는 방법으로 alkaline etching이 사용된다. 그러나 다결정 실리콘 태양전지의 경우 재료의 결정 방향에 따라 식각되는 alkaline etching은 텍스쳐링의 모양을 제어할 수 없어 효과적이지 못하다. 이와 달리 플라즈마 식각방법을 사용하면 표면 텍스쳐의 모양을 효과적으로 제어하여 조금 더 낮은 반사율을 얻을 수 있다. 하지만 텍스쳐 모양 조절로 얻은 낮은 반사율이 항상 높은 변환효율을 얻을 수 있는 것은 아니다. 본 연구에서는 대면적 RIE 공정 조건별로 얻은 태양전지 표면 텍스쳐의 모양에 따라 각각의 반사율과 양자효율 및 변환효율이 미치는 영향을 살펴보았다.

ICP-RIE를 이용한 저압용 실리콘 압력센서 제작 (Fabrication of a silicon pressure sensor for measuring low pressure using ICP-RIE)

  • 이영태
    • 센서학회지
    • /
    • 제16권2호
    • /
    • pp.126-131
    • /
    • 2007
  • In this paper, we fabricated piezoresistive pressure sensor with dry etching technology which used ICP-RIE (inductively coupled plasma reactive ion etching) and etching delay technology which used SOI (silicon-on-insulator). Structure of the fabricated pressure sensor shows a square diaphragm connected to a frame which was vertically fabricated by dry etching process and a single-element four-terminal gauge arranged at diaphragm edge. Sensitivity of the fabricated sensor was about 3.5 mV/V kPa at 1 kPa full-scale. Measurable resolution of the sensor was not exceeding 20 Pa. The nonlinearity of the fabricated pressure sensor was less than 0.5 %F.S.O. at 1 kPa full-scale.

Neural Network-based Time Series Modeling of Optical Emission Spectroscopy Data for Fault Prediction in Reactive Ion Etching

  • Sang Jeen Hong
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.131-135
    • /
    • 2023
  • Neural network-based time series models called time series neural networks (TSNNs) are trained by the error backpropagation algorithm and used to predict process shifts of parameters such as gas flow, RF power, and chamber pressure in reactive ion etching (RIE). The training data consists of process conditions, as well as principal components (PCs) of optical emission spectroscopy (OES) data collected in-situ. Data are generated during the etching of benzocyclobutene (BCB) in a SF6/O2 plasma. Combinations of baseline and faulty responses for each process parameter are simulated, and a moving average of TSNN predictions successfully identifies process shifts in the recipe parameters for various degrees of faults.

  • PDF

Oxygen Plasma Characterization Analysis for Plasma Etch Process

  • Park, Jin-Su;Hong, Sang-Jeen
    • 동굴
    • /
    • 제78호
    • /
    • pp.29-31
    • /
    • 2007
  • This paper is devoted to a study of the characterization of the plasma state. For the purpose of monitoring plasma condition, we experiment on reactive ion etching (RIE) process. Without actual etch process, generated oxygen plasma, measurement of plasma emission intensity. Changing plasma process parameters, oxygen flow, RF power and chamber pressure have controlled. Using the optical emission spectroscopy (OES), we conform to the unique oxygen wavelength (777nm), the most powerful intensity region of the designated range. Increase of RF power and chamber pressure, emission intensity is increased. oxygen flow is not affect to emission intensity.