• 제목/요약/키워드: RHT concrete model

검색결과 5건 처리시간 0.016초

Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model

  • Rashad, Mohamed;Yang, T.Y.
    • Computers and Concrete
    • /
    • 제23권2호
    • /
    • pp.121-131
    • /
    • 2019
  • Due to the heterogeneity nature of the concrete, it is difficult to simulate the hyperdynamic behaviour and crack trajectory of concrete material when subjected to explosion loads. In this paper, a 3D nonlinear numerical study was conducted to simulate the hyperdynamic behaviour of concrete under various loading conditions using Riedel-Hiermaier-Thoma (RHT) model. Detailed calibration was conducted to identify the optimal parameters for the RHT model on the material level. For the component level, the calibrated RHT parameters were used to simulate the failure behaviour of plain concrete (PC) slab under free air blast load. The response was compared with an available experimental result. The results show the proposed numerical model can accurately simulate the crack trajectory and the failure mode of the PC slab under free air blast load.

재료모델에 따른 유연 콘크리트 매트리스의 충돌 거동 평가 (Collision Behavior Evaluation of Flexible Concrete Mattress Depending on Material Models)

  • 류연선;조현만;김서현
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.70-77
    • /
    • 2015
  • The purpose of this study was to provide fundamental data for an anchor collision simulation of an FCM (flexible concrete mattress). Numerical material models (elastic-perfectly plastic model, Drucker-Prager model, and RHT concrete model) were compared. ANSYS Explicit Dynamics was used for collision analyses. An FE model was used for the anchor, FCM, andreinforcement bars. The results showed that the behavior of the FCM was verydifferent that those ofthe material models. In particular, the effect of the pressure dependent strength was most noticeable among the properties of concrete.

아치형 해저 케이블 보호 구조물의 앵커 충돌 수치 시뮬레이션 (Numerical Simulation of Arch-type Submarine Cable Protector under Anchor Collision)

  • 우진호;나원배;김헌태
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.96-103
    • /
    • 2009
  • In 2006, Jeju Island in South Korea experienced a crisis, no electricity for three hours anywhere in the entire island. This incident was caused by a domino effect that occurred after one of the submarine power cables connecting the island to Haenam, a coastal city on the mainland, was damaged by an external load, probably from a ship anchor or a steel pile being used in marine farming. This study presents a collision analysis of a new submarine power cable protector called arch type reinforced concrete. For the analysis, a dynamic finite element program, ANSYS AUTODYN, was used to examine the displacement and stress of the submarine power cable protector using different material models (RHT concrete model, Mohr.Coulomb concrete model). In addition, two reinforcing bar spacings, 75 mm and 150 mm, were considered. From the analyses, the effects of the parameters (concrete model and spacing) on the results (displacement and stress) were analyzed, and the relations between the damage and parameters were found.

비선형 폭발해석에 의한 콘크리트 구조물의 손상도 평가 (Nonlinear Explosion Analyses for Damage Assessments of Reinforced Concrete Structures)

  • 허택녕;김성윤
    • 대한토목학회논문집
    • /
    • 제37권1호
    • /
    • pp.1-7
    • /
    • 2017
  • 일반적으로 구조물에 폭발, 충돌, 지진과 바람 등과 같이 짧은 시간에 큰 하중이 작용하게 되면 구조물은 국부적으로 재료의 대변형(large deformation), 대회전(large rotation), 대변형률(large strain)등이 발생하게 된다. 이와 같은 현상을 해석하려면 전산연속체 역학에 기초하여 유체-구조물 상호작용 등을 고려할 수 있는 하이드로코드(Hydrocode)의 도움이 필요하다. 또한, 폭발로 인해 발생되는 순간 동역학적인 폭발 메커니즘은 매우 복잡하기 때문에 폭발실험을 병행하여 거동을 예측하는 것이 합리적인 방법이지만 막대한 비용과 시설이 요구되므로 한계가 있는 것도 사실이다. 따라서 본 논문에서는 하이드로코드인 AUTODYN을 사용하여 폭발해석한 결과를 기수행된 철근콘크리트 슬래브의 폭발실험 결과와 비교하여 폭발해석 방법의 타당성을 검토하였고, 동일한 폭발해석 모형에 대하여 철근 배근간격, 피복두께의 변화 및 수직철근 유무에 따른 폭발 손상도를 비교검토하였다. 검토한 결과, 철근의 배근간격에 대한 철근콘크리트 슬래브 두께의 비가 커질수록, 지름이 큰 철근보다 지름이 작은 철근을 많이 사용할수록, 마지막으로 수직철근을 배근할수록 콘크리트 구조물의 내폭성능이 향상됨을 알 수 있었다.

Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads

  • Rashad, Mohamed;Wahab, Mostafa M.A.;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.217-230
    • /
    • 2019
  • One of the most important design criteria in underground structure is to design lightweight protective layers to resist significant blast loads. Sandwich blast resistant panels are commonly used to protect underground structures. The front face of the sandwich panel is designed to resist the blast load and the core is designed to mitigate the blast energy from reaching the back panel. The design is to allow the sandwich panel to be repaired efficiently. Hence, the underground structure can be used under repeated blast loads. In this study, a novel sandwich panel, named RC panel - Helical springs- RC panel (RHR) sandwich panel, which consists of normal strength reinforced concrete (RC) panels at the front and the back and steel compression helical springs in the middle, is proposed. In this study, a detailed 3D nonlinear numerical analysis is proposed using the nonlinear finite element software, AUTODYN. The accuracy of the blast load and RHR Sandwich panel modelling are validated using available experimental results. The results show that the proposed finite element model can be used efficiently and effectively to simulate the nonlinear dynamic behaviour of the newly proposed RHR sandwich panels under different ranges of free air blast loads. Detailed parameter study is then conducted using the validated finite element model. The results show that the newly proposed RHR sandwich panel can be used as a reliable and effective lightweight protective layer for underground structures.