• Title/Summary/Keyword: RHEED

Search Result 132, Processing Time 0.027 seconds

Epitaxial Growth of BSCCO Type Structure in Atomic Layer by Layer Deposition by Ion Beam Sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Kim, Jeong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.7-10
    • /
    • 2000
  • Bi$_2$Sr$_2$CuI$\_$x/(Bi(2001)) thin films are fabricated by atomic layer by layer deposition using ion beam sputtering(IBS) method. During the deposition , 10 %-ozone/oxygen mixture gas of typical 25.0$\times$10$\^$-5/ Torr is applied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less then 10 units cell and then c-axis oriented Bi(2201) is grown.

  • PDF

Effects of Substrate Cleaning on the Properties of GaAs Epilayers Grown on Si(100) Substrate by Molecular Beam Epitaxy (분자선에피택시에 의해 Si (100) 기판 위에 성장한 GaAs 에피층의 특성에 대한 기판 세척효과)

  • Cho, Min-Young;Kim, Min-Su;Leem, Jae-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.371-376
    • /
    • 2010
  • The GaAs epitaxial layers were grown on Si(100) substrates by molecular beam epitaxy (MBE) using the two-step method. The Si(100) substrates were cleaned with three different surface cleaning methods of vacuum heating, As-beam exposure, and Ga-beam deposition at the substrate temperature of $800^{\circ}C$ in the MBE growth chamber. Growth temperature and thickness of the GaAs epitaxial layer were $800^{\circ}C$ and $1{\mu}m$, respectively. The surface structure and properties were investigated by reflection high-energy electron diffraction (RHEED), AFM (Atomic force microscope), DXRD (Double crystal x-ray diffraction), PL (Photoluminescence), and PR (Photoreflectance). From RHEED, the surface structure of GaAs epitaxial layer grown on Si(100) substrate with Ga-beam deposition is ($2{\times}4$). The GaAs epitaxial layer grown on Si(100) substrate with Ga-beam deposition has a high quality.

Influence of Surfactants(Ag, Sn) in Si/Si(111) Homoepitaxial Growth (Si(111) Homoepitaxial성장에서 중간금속이 미치는 영향)

  • Gwak, Ho-Won;Lee, Ui-Wan;Park, Dong-Su;Gwak, Lee-Sang;Lee, Chung-Hwa;Kim, Hak-Bong;Lee, Un-Hwan
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.230-236
    • /
    • 1993
  • We have the homoepitaxiallayers on the surfaces of Si(111) with and without the adsorbed surfactants, for example, Ag or Sn. In this paper, We have studied the difference of growth for these two cases by the observation of intensity oscillations of RHEED specular spots during the growing processes. In the case of growth without the adsorbed surfactants, the Si atoms fill first the stacking fault layer of Si(111) 7 ${\times}$7 structure. Therefore, the irregular oscillations are observed in the early stage of growing process. However, in the case of growth with the adsorbed surfactants, the surfactants already have the ${\sqrt}{3}$ ${\times}$ ${\sqrt}{3}$ structures on the surfaces of Si(111) at the adjucate temperatures of 300`$600^{\circ}C$ and 190~$860^{\circ}C$ for the surfactants of Ag and Sn, respectively. We also find that the number of oscillations is a little larger for the case of growth with the adsorbed surfactants. The reason for this is that for the case of growth with the adsorbed surfactants, the activation energies of Si atoms decrease due to the segregation of surfactants toward the growing surfaces.

  • PDF

Control of Thin Film Media Microstructure by Using Very Thin Seedlayer Material with Different Affinity for Oxygen

  • Djayaprawira, D.D.;Yoshimura, Satoru;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.106-114
    • /
    • 2002
  • To reduce the grain size and the media noise in a typical CrMo/CoCrPtB longitudinal media, a sputtering process which includes the exposure of oxygen onto the surface of CrW$_x$ (x=0, 25, 50, 75, 100 at.%) and CrTi$_{15}$ seedlayers with the thickness of 0.5 nm have been utilized. The main results are: (1) the media grain size and the media noise are reduced when using CrW$_x$ (x=0, 25, 50 at.%) seedlayers, and not reduced when using CrTils or CrW$_x$ (x=75, 100 at.%) seedlayers, (2) AES and RHEED results suggest that W seedlayer, which has the highest melting point, forms layer-like film with very small and dense island grain, due to its high free surface energy and low mobility. On the other hand, CrW$_{50}$ and Cr seedlayers, which have lower melting point than W seedlayer, form island film, (3) to effectively reduce the media grain size and improve the media signal to noise ratio, it is essential to utilize a very thin Cr-based seedlayer with high affinity for oxygen and which forms island-like structure, such as CrW$_{50}$ seedlayer.

Growth of GaN on sapphire substrate by GSMBE(gas source molecular beam epitaxy) using ammonia as nitrogen source (Nitrogen source로 ammonia를 사용해 GSMBE로 성장된 GaN 박막 특성)

  • Cho Hae-jong;Han Kyo-yong;Suh Young-suk;Misawa Yusuke;Park Kang-sa
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.501-504
    • /
    • 2004
  • High quality GaN layer was obtained on 0001 sapphire substrate using ammonia($NH_3$) as a nitrogen source by gas source molecular beam epitaxy. As a result, RHEED is used to investigate the relaxation processes which take place during the growth of GaN. In-situ RHEED(reflection high electron energy diffraction) appeared streaky-like pattern. The full Width at half maximum of the x-ray diffraction(FWHM) rocking curve measured from plane of GaN has exhibited as narrow as 8arcmin and surface roughness was 7.83nm. Photoluminescence measurement of GaN was investigated at room temperature, where the intensity of the band edge emission is much stronger than that of deep level emission. The GaN epitaxy layer according to various growth condition was investigated.

  • PDF

Growth of $CaF_{2}:R^{+3}$ (R=Nd, Er) layers by molecular beam epitaxy (Molecular beam epitaxy법에 의한 희토류 이온$(Nd^{3+},\;Er^{3+})$ 첨가 $CaF_{2}$ 박막의 성장)

  • ;Yefen Chen;Tsuguo Fukuda
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 1999
  • The rare-earth ions ($R^{3+}$, R=Nd, Er) doped $CaF_{2}$ layers have been grown on $CaF_{2}$ (111) substrate by molecular beam epitaxy. The surface structure and the crystallinity of $CaF_{2}:R^{3+}$ layers depending on the doping concentration of $R^{3+}$ and layer thickness were studied by reflection high-energy electron diffraction (RHEED). In aspect of application as buffer layer in semiconductor-related hybrid structure, the lattice displacement between $CaF_{2}:R^{3+}$ layers and $CaF_{2}$ (111) substrate was investigated by X-ray rocking curve analysis.

  • PDF

Crystal Growth of 3C-SiC Using HMDS Gas Source (HMDS 가스원을 이용한 3C-SiC의 결정성장)

  • Sun, Ju-Hun;Chung, Yun-Sik;Chung, Gwiy-Sang;Nishino, Shigehiro
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.735-738
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD method using HMDS(hexamethyildisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The heteroepitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra$(2{\theta}=41.5^{\circ})$.

  • PDF

Physical Characteristics of 3C-SiC Thin-films Grown on Si(100) Wafer (Si(100) 기판 위에 성장돈 3C-SiC 박막의 물리적 특성)

  • ;;Shigehiro Nishino
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.953-957
    • /
    • 2002
  • Single crystal 3C-SiC (cubic silicon carbide) thin-films were deposited on Si(100) wafer up to the thickness of 4.3 ${\mu}{\textrm}{m}$ by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane; {CH$_{3}$$_{6}$ Si$_{2}$) at 135$0^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC film was 4.3 ${\mu}{\textrm}{m}$/hr. The 3C-SiC epitaxial film grown on Si(100) wafer was characterized by XRD (X-ray diffraction), AFM (atomic force microscopy), RHEED (reflection high energy electron diffraction), XPS (X-ray photoelecron spectroscopy), and Raman scattering, respectively. Two distinct phonon modes of TO (transverse optical) near 796 $cm^{-1}$ / and LO (longitudinal optical) near 974$\pm$1 $cm^{-1}$ / of 3C-SiC were observed by Raman scattering measurement. The heteroepitaxially grown film was identified as the single crystal 3C-SiC phase by XRD spectra (2$\theta$=41.5。).).