• Title/Summary/Keyword: RGB 색강도

Search Result 7, Processing Time 0.032 seconds

Development Small Size RGB Sensor for Providing Long Detecting Range (원거리 검출범위를 제공하는 소형 RGB 센서 개발)

  • Seo, Jae Yong;Lee, Si Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.174-182
    • /
    • 2015
  • In this paper, we developed the small size RGB sensor that recognizes a long distance using a low-cost color sensor. Light receiving portion of the sensor was used as a camera lens for far distance recognition, and illuminating unit was increased the strength of the light by using a high-power white LED and a lens mounted on the reflector. RGB color recognition algorithm consists of the learning process and the realtime recognition process. We obtain a normalized RGB color reference data in the learning process using the specimens painted with target colors, and classifies the three colors using the Mahalanobis distance in recognition process. We apply the developed the RGB color recognition sensor to a prototype of the part classification system and evaluate the performance of its.

An adaptive frequency-selective weighted prediction of residual signal for efficient RGB video compression coding (능률적 RGB 비디오 압축 부호화를 위한 잔여신호의 적응적 주파수-선택 가중 예측 기법)

  • Jeong, Jin-Woo;Choe, Yoon-Sik;Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.527-539
    • /
    • 2010
  • Most video coding systems use YCbCr color space for their inputs, but RGB space is more preferred in the field of high fidelity video because the compression gain from YCbCr becomes disappeared in the high quality operation region. In order to improve the coding performance of RGB video signal, this paper presents an adaptive frequency-selective weighted prediction algorithm. Based on the sign agreement and the strength of frequency-domain correlation of residual color planes, the proposed scheme adaptively selects the frequency elements as well as the corresponding prediction weights for better utilization of inter-plane correlation of RGB signal. Experimental results showed that the proposed algorithm improves the coding gain of around 13% bitrate reduction, on average, compared to the common mode of 4:4:4 video coding in the state-of-the-art video compression standard, H.264/AVC.

Assessment of Fire-Damaged Mortar using Color image Analysis (색도 이미지 분석을 이용한 화재 피해 모르타르의 손상 평가)

  • Park, Kwang-Min;Lee, Byung-Do;Yoo, Sung-Hun;Ham, Nam-Hyuk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.83-91
    • /
    • 2019
  • The purpose of this study is to assess a fire-damaged concrete structure using a digital camera and image processing software. To simulate it, mortar and paste samples of W/C=0.5(general strength) and 0.3(high strength) were put into an electric furnace and simulated from $100^{\circ}C$ to $1000^{\circ}C$. Here, the paste was processed into a powder to measure CIELAB chromaticity, and the samples were taken with a digital camera. The RGB chromaticity was measured by color intensity analyzer software. As a result, the residual compressive strength of W/C=0.5 and 0.3 was 87.2 % and 86.7 % at the heating temperature of $400^{\circ}C$. However there was a sudden decrease in strength at the temperature above $500^{\circ}C$, while the residual compressive strength of W/C=0.5 and 0.3 was 55.2 % and 51.9 % of residual strength. At the temperature $700^{\circ}C$ or higher, W/C=0.5 and W/C=0.3 show 26.3% and 27.8% of residual strength, so that the durability of the structure could not be secured. The results of $L^*a^*b$ color analysis show that $b^*$ increases rapidly after $700^{\circ}C$. It is analyzed that the intensity of yellow becomes strong after $700^{\circ}C$. Further, the RGB analysis found that the histogram kurtosis and frequency of Red and Green increases after $700^{\circ}C$. It is analyzed that number of Red and Green pixels are increased. Therefore, it is deemed possible to estimate the degree of damage by checking the change in yellow($b^*$ or R+G) when analyzing the chromaticity of the fire-damaged concrete structures.

Effect of Solar Radiation Aging on the Properties of Epoxy Polymers (에폭시 폴리머의 물성에 미치는 태양광 복사 노화의 영향)

  • Lee, Dong-Geon;Lee, Sang-Bong;Kim, Myung-June;Park, Jung-Sun;Lee, Soo-Yong;Kang, Tae-Yeob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.769-774
    • /
    • 2016
  • Epoxy polymer exposed to solar radiation on long-term is required to a long-term environmental test in order to ensure the reliability of operation performance. In this paper, the solar aging experiment is performed for 7, 14, 28, 56, and 84 cycles, using solar simulator designed according to MIL-STD-810. After the aging experiment, measuring RGB values and using the CIE1976 color space, each RGB decreasing rates and total color shift are calculated. In addition, using a universal testing machine, mechnical properties according to ASTM-D638 are measured. As a result, by increasing solar aging period, total color shift is increased, and the tensile strength and elongation are decreased, but the elastic modulus and the poisson's ratio are slightly changed.

Comparison between Colour Intensity of Tongue Body and That of Tongue Coat under the Ultraviolet Light in RGB system of Peeling Tongue Coat Image (RGB 컬러모델에서 자외선 조명하 박락태(剝落苔)의 설태와 설질 사이의 색 강도 차이에 관한 연구)

  • Nam, Dong-Hyun;Kim, Ji-Hye;Lee, Woo-Beom;Lee, Sang-Suk;Hong, You-Sik
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.15 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Objectives: The objective of this study is to compare the colour intensity of tongue body and that of tongue coat under the visible light and the ultraviolet light. Methods: We selected 7 subjects with completely or partially peeled tongue coat among the recruited 94 adults for the experiment. We took each tongue picture under the visible light and the ultraviolet light (315-400 nm) and then extracted sample images from the tongue body and tongue coat regions. Mean, median and mode of colour intensity from the sample images were calculated in 256 RGB system. Results: The green and the blue colour intensities of the tongue coats were significantly higher than those of the tongue bodies under the visible light. In all channels, the red, green and blue, the colour intensities of the tongue coats were significantly higher than those of the tongue bodies under the ultraviolet light. The colour differences between tongue coats and tongue bodies under the ultraviolet light were significantly higher than the colour differences under the visible light. Especially the colour difference under the ultraviolet light was highest in the green channel. Conclusions: We suggested that green colour image of the RGB system taken under the ultraviolet light could be used for more easy separating tongue coat region from tongue body.

Recent Progress in Membrane based Colorimetric Sensor for Metal Ion Detection (색 변화를 활용한 중금속 이온 검출에 특화된 멤브레인 기반 센서의 최근 연구 개발 동향)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.87-100
    • /
    • 2021
  • With a striking increase in the level of contamination and subsequent degradations in the environment, detection and monitoring of contaminants in various sites has become a crucial mission in current society. In this review, we have summarized the current research areas in membrane-based colorimetric sensors for trace detection of various molecules. The researches covered in this summary utilize membranes composed of cellulose fibers as sensing platforms and metal nanoparticles or fluorophores as optical reagents. Displaying decent or excellent sensitivity, most of the developed sensors achieve a significant selectivity in the presence of interfering ions. The physical and chemical properties of cellulose membrane platforms can be customized by changing the synthesis method or type of optical reagent used, allowing a wide range of applications possible. Membrane-based sensors are also portable and have great mechanical properties, which enable on-site detection of contaminants. With such superior qualities, membrane-based sensors examined in the researches were used for versatile purposes including quantification of heavy metals in drinking water, trace detection of toxic antibiotics and heavy metals in environmental water samples. Some of the sensors exhibited additional features like antimicrobial ability and recyclability. Lastly, while most of the sensors aimed for a detection enabled by naked eyes through rapid colour change, many of them investigated further detection methods like fluorescence, UV-vis spectroscopy, and RGB colour intensity.

A Rapid Method for Monitoring of Gram-positive Bacteria in Wastewater Treatment Systems (폐수처리시스템에서의 그람 양성 세균 모니터링 방법)

  • Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • A simple and rapid method was developed for monitoring of Gram-positive bacteria in the wastewater treatment system. Culture suspensions of 4 Gram-positive and 4 Gram-negative strains were filtrated and stained with a polyethersulfone membrane filter and Toluidine Blue-O. To establish quantitative color image analysis, the intensity value of RGB (red-green-blue) color of a scanned filter image was analyzed with a photographic program. Red and green color values of Gram-positive bacteria were higher than those of Gram-negative bacteria. This method was applied to the activated sludge mixed with the Gram-positive bacteria. Although evaluation was difficult due to the irregular size and shape of flocs, the population of Gram-positive bacteria in the activated sludge could be monitored with floc dispersion technique. The more amounts of Gram-positive bacteria in the activated sludge led to the increase of red and green color values. This method provides a rapid and quantitative measurement of Gram-positive bacteria within the wastewater treatment systems.