• Title/Summary/Keyword: RG3

Search Result 822, Processing Time 0.022 seconds

The Conversion of Ginsenosides by Extrusion Molding (압출성형에 의한 ginsenoside의 변환)

  • Ryu, Jae-Hyung;Li, Chun-Ying;Ahn, Moon-Sub;Kim, Jang-Won;Kang, Wie-Soo;Rhee, Hae-Ik
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.114-118
    • /
    • 2008
  • Ginseng treated with several treatment conditions of various acids to search hydrolysates on the basis of increased biological activity and modified structure. In the result of acid treatment, the conversion rate of ginsenoside Rg3, Rk1 and Rg5 was highest when ginseng treated with citric acid. After added citric acid to ginseng extract, boiled at l00$^{\circ}C$ for 1 hour and add enzyme, which is examined change by time. It compared with group which did not treated acid. Two groups became difference according to enzyme but the generation rate of ginsenoside Rg3, Rk1 and Rg5 did not show difference greatly. Also, the generation rate of ginsenoside Rg3, Rk1 and Rg5 by time passes did not show difference. The generation rate of ginsenoside Rg3, Rk1 and Rg5 increased when increased acid concentration, temperature and time. We did exclusion molding to shorten treatment time. In the result of ginseng treated with citric acid of various concentrations at various temperatures as time passes by extrusion molding, the generation rate of ginsenoside Rg3, Rk1 and Rg5 was highest when ginseng treated with 3% citric acid at l60$^{\circ}C$ for 20 minutes. In addition, total saponin amount of ginseng treated with 3% citric acid at 160$^{\circ}C$ for 20 minutes was about 11% higher than ginseng heated at 120$^{\circ}C$ for 3 hours. These results indicated that our exclusion molding process more effective, compared to traditional red ginseng manufacturing process.

The Change of Ginsenoside Composition in American Ginseng (Panax quinquefolium) Extract by the Microwave and Vinegar Process (서양삼 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Gwak, Hyeon Hui;Im, Byung Ok;Cho, Soon Hyun;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of American ginseng (Panax quinquefolium) extract featuring high concentration of ginsenoside $Rg_3$, $Rg_5$, and $Rk_1$, Red ginseng special components. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of American ginseng were processed under several treatment conditions of microwave and vinegar (about 14% acidity). The results showed that the quantity of ginsenoside $Rg_3$ increased by over 0.9% at the 20 minutes of the pH 2~4 vinegar and microwave American ginseng ethanol extract compared with other process times. The result of MAG-20 indicates that the American ginseng microwave and vinegar-processed American ginseng extracts (about 14% acidity) treated for 20 minutes produced the highest amount of ginsenoside $Rg_3$ (0.969%), $Rg_5$ (1.071%), and $Rk_1$ (0.247%). Besides, MAG-15 indicates that the microwave - and vinegar-processed American ginseng extracts (about 14% acidity) treated for 15 minutes produced the highest amount of ginsenoside $Rg_3$ (0.772%), $Rg_5$ (1.330%), and $Rk_1$ (0.386%). This indicates that American ginseng treated with microwave and vinegar had the quantity of the ginsenoside $Rg_3$ over 32 times the amount of the ginsenoside $Rg_3$ (which was not found in raw and American ginsengs) in the average commercial Red ginseng.

A New Processed Ginseng with Fortified Activity

  • Park, Jeong-Hill;Kim, Jong-Moon;Han, Sang-Beom;Kim, Na-Young;Surh, Young-Joon;Lee, Seung-Ki;Kim, Nak-Doo;Park, Man-Ki
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.146-159
    • /
    • 1998
  • A new processed ginseng with fortified activity is developed. The process comprise with the heat treatment of fresh or white ginseng at higher temperature and pressure than those used for the preparation of red ginseng. This new processed ginseng showed 7 times higher antioxidant activity and more than 30 times stronger vasodilating activity than those shown in raw ginseng. Other activities found in the new processed ginseng include cancer chemoprevention, antinephrotoxic, and antineurotoxic activities. Less polar ginsenosides isolated from processed ginseng exhibited anti-platelet aggregation activity and anti-cancer activity. Many ginsenosides were isolated from this new processed ginseng, namely 20(S)-$Rg_3$,20(R)-$Rg_3$, $Rg_5$, $Rg_6$, $F_4$, $Rh_4$,20(S)-$Rg_3$,20(R)-$Rg_3$ and $Rg_4$. In addition to these known compounds, seven new ginsenosides, named as gisenoside $Rk_1$, $Rk_2$, $Rk_3$, $Rs_4$, $Rs_5$, $Rs_6$, and $Rs_7$ were isolated. The major constituents of new processed ginseng were 20(S)-$Rg_3$,20(R)-$Rg_3$, $Rk_1$ and $Rg_5$ which are minors in red ginseng. Since the chemical constituents and biological activities of this new processed ginseng are quite different from those of white or red ginseng, we designated it as $'$sun ginseng (仙蔘)$'$.s;$.

  • PDF

Inhibitory Effect of Ginsenoside Rg5 and Its Metabolite Ginsenoside Rh3 in an Oxazolone-Induced Mouse Chronic Dermatitis Model

  • Shin, Yong-Wook;Bae, Eun-Ah;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.685-690
    • /
    • 2006
  • The effect of a main constituent ginsenoside Rg5 isolated from red ginseng and its metabolite ginsenoside Rh3 in a chronic dermatitis model was investigated. Ginsenosides Rg5 and Rh3 suppressed swelling of oxazolone-induced mouse ear contact dermatitis. These ginsenosides also reduced mRNA expressions of cyclooxygenase-2, interleukin $(IL)-1{\beta}$, tumor necrosis factor $(TNF)-{\alpha}$ and interferon $(IFN)-{\gamma}$. The inhibition of ginsenoside Rh3 was more potent than that of ginsenoside Rg5. These findings suggest that ginsenoside Rh3 metabolized from ginsenoside Rg5 may improve chronic dermatitis or psoriasis by the regulation of $IL-1{\beta}$ and $TNF-{\alpha}$ produced by macrophage cells and of $IFN-{\gamma}$ produced by Th cells.

Increase of Functional Saponin by Acidic Treatemnt and Temperature of Red Ginseng Extract (홍삼엑기스의 산(pH) 및 온도처리에 의한 기능성 사포닌 함량증대)

  • In Jun-Gyo;Lee Bum-Soo;Kim Eun-Jeong;Park Myung-Han;Yang Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.139-143
    • /
    • 2006
  • To increase the contents of functional ginsenosides by conversion, especially ginsenoside-$Rg_3$ and $Rh_2$, the extracts of red ginseng were treated with high temperature and citric acid or apricot extract. When the extracts were subject to $120^{\circ}C$ for 2 hours, the content of ginsenoside-$Rg_3$ was increased 2 times than in control. When the extracts were subject to $120^{\circ}C$ and acidic conditions adjusted with citric acid, the ginsenoside-$Rg_3$, was detected 2.8 times, but other ginsenoside were decreased heavily to 65%. When the extract were treated with for 12 hours at $80^{\circ}C$, the content of ginsenoside-$Rg_3$ was increased to 3.3 times, Also, when the red ginseng extracts were treated with apricot extract, the ginsenoside-$Rg_3$ was detected to 4 times than in control, but other ginsenoside were decreased lightly to 35%, not same as at the $120^{\circ}C$ treatment.

Changes of Ginsenosides and Physiochemical Properties in Ginseng by New 9 Repetitive Steaming and Drying Process (새로운 자동 구증구포방법에 의한 인삼사포닌의 변환 및 이화학적 특성)

  • Jin, Yan;Kim, Yeon-Ju;Jeon, Ji-Na;Wang, Chao;Min, Jin-Woo;Jung, Sun-Young;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • This study was conducted to investigate the contents of ginsenosides and physiochemical properties of Panax ginseng after 9 times steaming and drying treatment by using the new auto steamer which is more fast and simple than previous report. In the process of steaming and drying, the content of six major ginsenosides such as Rg1, Re, Rb1, Rc, Rb2 and Rd were gradually decreased. On the other hand, the content of seven minor ginsenosides includes Rh1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5 were gradually increased. We observed the protopanxadiol ginsenosides such as Rb1, Rb2, Rc and Rd were converted into 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5; similarly protopanxatriol ginsenosides of Rg1 and Re were converted into Rh1, 20(S)-Rg2 and 20(R)-Rg2. Based on the result of fresh ginseng, the contents of reducing sugar, acidic polysaccharide and total phenolic compounds were gradually increased and reached to maximum at 7 times repetitive steaming process of the fresh ginseng. Whereas DPPH radical scavenging activities were gradually decreased to 68% at 7 times steaming. New auto 9 repetitive steaming and drying process has similar production with original methods, but content of benzo(a)pyrene were not almost detected comparatively taking less time. The present results suggested that this method is best for the development of value-added ginseng industry related products.

Characterization of Weizmannia ginsengihumi LGHNH from Wild-Ginseng and Anti-Aging Effects of Its Cultured Product (산삼 공생 미생물 Weizmannia ginsengihumi LGHNH의 특징 및 배양물의 항노화 효능)

  • Minjung Kwon;Hyejin Lee;So Young Lee;Mu Hyun Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.414-421
    • /
    • 2022
  • In this study, we isolated Weizmannia ginsengihumi LGHNH (KCTC 14462BP) from 30-year-old wild Panax ginseng C.A. Meyer and elucidated the characteristics of the isolated bacterium and its industrial potential as an anti-aging material. W. ginsengihumi LGHNH was investigated to produce indole-3-acetic acid (IAA), a plant growth-promoting hormone (1.38 ㎍/ml to 2.22 ㎍/ml). We also confirmed the existence of bioconversion activity via the comparison of the ginsenoside content before and after fermentation. As for the converted minor ginsenoside, Rg2(R), Rg4, Rg6, Rg3(S), Rg3(R), Rk1, Rg5, Rh1(R), Rk3 and Rh4 are known to have high bioavailability and various skin effects. We measured mitochondrial membrane potential and ATP biosynthesis to elucidate W. ginsengihumi LGHNH cultured product (WCP) as an anti-aging material. As a result, the mitochondrial membrane potential in HaCaT cells with UVB decreased to 39.3% compared to the unirradiated group, but was recovered to 57.3% and 58.1% by 0.001% (v/v) and 0.01% (v/v) WCP, respectively. In addition, we measured mitochondrial ATP biosynthesis. It decreased to 94.3% compared to the unirradiated group with UVB, but was recovered to 105.3% and 105.7% by 0.001% (v/v) and 0.01% (v/v) WCP.

Effect of red ginseng NaturalGEL on skin aging

  • Kim, Ye Hyang;Park, Hye Rim;Cha, So Yoon;Lee, So Hun;Jo, Jung Wung;Go, Jung Nam;Lee, Kang Hyuk;Lee, Su Yeon;Shin, Song Seok
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.115-122
    • /
    • 2020
  • Background: In aged skin, degradation of collagen fibers, which occupy the majority of the extracellular matrix in the dermis, and changes of aquaporin 3 (AQP3) and skin constituents, such as hyaluronic acid and ceramide, cause wrinkles and decrease skin moisturization to contribute to dryness and lower elasticity skin. Red ginseng (RG) is used as a cosmetic and food material and is known to protect from UVB-induced cell death, increase skin hydration, prevent wrinkles, and have an antioxidative effect. But, in general, RG used as a material is the soluble liquid portion in the solvent, and the part that is not soluble in the solvent is discarded. Thus, we made the whole RG into microgranulation and dispersed in water to produce gel form for using entire RG, and it was named red ginseng NaturalGEL (RG NGEL). Methods: RG NGEL was investigated for matrix metalloproteinases inhibitory activity, induction of Type I collagen, AQP3, hyaluronan synthetase 2, serine palmitoyl transferase, ceramide synthase 3, and filaggrin expression and compared with RG water extract. Results: RG NGEL reduced the levels of UV-induced matrix metalloproteinases and increased Type I collagen in human fibroblast cells and upregulated AQP3, hyaluronan synthetase 2, serine palmitoyl transferase, ceramide synthase 3, and filaggrin expressions in human keratinocytes compared with RG water extract. Conclusion: RG NGEL has the potential as an effective reagent for antiaging cosmetics to improve wrinkle formation and skin hydration.

ab initio Calculations on Alkali Atom - Rare Gas Van Der Waals Clusters (알칼리 금속 - 비활성 기체 반데르발스 복합체에 대한 양자화학적 계산)

  • Lee, Bo Soon;Lee, Sung Yul
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.3
    • /
    • pp.190-193
    • /
    • 2000
  • ab initio calculations are presented for M-Rg and M-Rg2 (M=Li, Na, Rg=He, Ar) van der Waals clusters.InternucIear distances and binding energies of LiHe, LiAr and NaAr obtained by all-electron MP2(6-311++G(3df,3pd)) method are in good agreement with experimental values. Calculated properties of LiHe$_2$, LiAr$_2$, NaHe$_2$ and NaAr$_2$ are also reported.

  • PDF

Change of Ginsenoside Composition in Ginseng Extract by Vinegar Process

  • Ko, Sung-Kwon;Lee, Kyung-Hee;Hong, Jun-Kee;Kang, Sung-An;Sohn, Uy-Dong;Im, Byung-Ok;Han, Sung-Tai;Yang, Byung-Wook;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.509-513
    • /
    • 2005
  • The purpose of this study was to develop a new preparation process of ginseng extract using high concentrations of ginsenoside $Rg_3$, a special component in red ginseng. From when the ginseng saponin glycosides transformed into the prosapogenins chemically, they were analyzed using the HPLC method. The ginseng and ginseng extract were processed with several treatment conditions of an edible brewing vinegar. The results indicated that ginsenoside $Rg_3$ quantities increased over 4% at the pH 2-4 level of vinegar treatment. This occurred at temperatures above $R90^{\circ}C$, but not occurred at other pH and temperature condition. In addition, the ginseng and ginseng extract were processed with the twice-brewed vinegar (about 14% acidity). This produced about 1.5 times more ginsenoside $Rg_3$ than those processed with regular amounts of brewing vinegar (about 7% acidity) and persimmon vinegar (about 3% acidity). Though the white ginseng extract was processed with the brewing vinegar over four hr, there was no change for ginsenoside $Rg_3$. However, the VG8-7 was the highest amount of ginsenoside $Rg_3$ (4.71%) in the white ginseng extract, which was processed with the twice-brewed vinegar for nine hr. These results indicate that ginseng treated with vinegar had 10 times the quantity of ginsenoside $Rg_3$, compared to the amount of ginsenoside $Rg_3$ in the generally commercial red ginseng, while ginsenoside $Rg_3$ was not found in raw and white ginseng.