• Title/Summary/Keyword: RFLP analysis

Search Result 523, Processing Time 0.019 seconds

Evaluation of Pyrosequencing Method for a BRAFV600E Mutation Test

  • Oh, Seo Young;Lee, Hoon Taek
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • A fine needle aspiration biopsy (FNAB) is the primary means of distinguishing benign from malignant in thyroid nodules. However, between 10 and 30% of the FNABs of thyroid nodules are diagnosed as 'indeterminate'. A molecular method is needed to reduce unnecessary surgery in this group. In Korea, most thyroid cancer is classic papillary type and BRAFV600E mutation is highly prevalent. Thus, this study compared the pyrosequencing method with the conventional direct DNA sequencing and PCR-RFLP analysis and investigated the evaluation of preoperative BRAFV600E mutation analysis as an adjunct diagnostic method with routine FNABs. Sixty-five (78.3%) of 83 histopathologically diagnosed malignant nodule revealed positive BRAFV600E mutation on pyrosequencing analysis. In detail, 65 (83.8%) of 78 papillary thyroid carcinomas sample showed positive BRAFV600E mutation. None of 29 benign nodules had in pyrodequencing, direct DNA sequencing and PCR-RFLP. Out of 31 thyroid nodules classified as 'indeterminate' on cytological examination preoperatively, 28 cases turned out to be malignant: 24 papillary thyroid carcinomas. Among that, 16 (66.7%) classic papillary thyroid carcinomas had BRAFV600E mutation. Among 65 papillary thyroid carcinomas with positive BRAFV600E mutation detected by pyrosequencing analysis, each 3 cases and 5 cases did not show BRAFV600E mutation by direct DNA sequencing and PCR-RFLP analysis. Therefore, pyrosequencing was superior to direct DNA sequencing and PCR-RFLP in detecting the BRAFV600E mutation of thyroid nodules (p =0.027). Detecting BRAFV600E mutation by pyrosequencing was more sensitivity, faster than direct DNA sequencing or PCR-RFLP.

Classification and Genetic Variation Analysis Among Formae Speciales of Fusarium oxysporum by Using Recombinant DNA Probes (재조합 DNA probe에 의한 Fusarium oxysporum 분화형간의 분류 및 유전적 변이 분석)

  • Kim, Young-Tae;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.362-368
    • /
    • 1997
  • Five formae speciales of Fusarium oxysporum in Korea were examined using RFLP analysis to find the possibility for classification and analyze genetic variations. DNAs from F. oxysporum f. sp. lycopersici, cucumerinum, fragariae, garlic and sesami were used with three recombinant probes such as pFC46, pFC52 and pFC57. Distinct differences among five formae speciales of this fungus were detected in RFLP band patterns based on southern hybridization of genomic DNA using each recombinant clone, which was a repetitive copy probe. Strains belong to four formae speciales could be very stable in genetic variation except f. sp. sesami which has more variation than the others based on the RFLP analysis. They formed their own cluster which has high similarity within the same formae specialis resulted from the UPGMA analysis for genetic relationship analysis and each cluster represented its own formae specialis. The method using three recombinant DNA probes could be a good tool for classification of formae speciales in F. oxysporum.

  • PDF

Phylogenetic Analysis by RFLP and Sequencing of Mitochondrial DNA in a Korean Population

  • Lee, Jin-Young;Kim, Heui-Soo;Ha, Bae-Jin;Park, Yeong-Hong
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.88-95
    • /
    • 2006
  • Analysis of molecular nature of mitochondrial DNA (mtDNA) could be powerful marker for anthropological studies of modern populations. While population genetic studies on mtDNA have been reported for several ethnic groups, no such study has been documented for the Korean population. We surveyed mtDNA polymorphisms in the HVS I of noncoding D-loop region and its upstream region from 430 unrelated healthy Korean population by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing analysis. PCR product with 2,790 bp spanning the specific mtDNA region (mt13715-16504) was subjected to RFLP analysis using 6 restriction enzyme (Hinf I, Hae III, Alu I, Dde I, Mbo I, Rsa I). On the PAUP analysis of PCR-RFLP results, 38 mtDNA haplotypes (Hap 1-38) were detected in the Korean populations, which were classified into 11 haplogroups (Grp 1-11) of related haplotypes encompassing all 38 haplotypes. In comparison of sequencing data with Anderson's reference sequence, the transition type was more prevalent than the transversion type. Insertions or deletions were not found. In addition, three of the polymorphic sites (A16240C, A16351G, G16384A) in HVS-I region are determined newly. The polymorphic sites were distributed randomly in the region, though the frequency at each site was variable. Thus, this research might be required for the genealogical study of Orientals.

Evaluation of the Colonization of Lactobacillus plantarum in Mouse Gut by Terminal Restriction Fragment Length Polymorphism Analysis (Terminal Restriction Fragment Length Polymorphism 분석을 이용한 Lactobacillus plantarum의 생쥐 장관 정착 평가)

  • Jung, Gwangsick;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.389-395
    • /
    • 2012
  • T-RFLP (terminal restriction fragment length polymorphism) analysis, one of the most highly adopted culture-independent microbial community analysis methods, was applied to evaluate the colonization of probiotics in experimental animal gut. Lactic acid bacteria that exhibited cinnamoyl esterase activity were isolated from Korean fermented vegetables and identified by 16S ribosomal RNA sequence analysis. Lactobacillus plantarum KK3, which demonstrated high chlorogenic acid hydrolysis by cinnamoyl esterase activity, and acid/bile salt resistances, was cultured, freeze-dried, and fed to mice and the microbiota in their feces were monitored by T-RFLP analysis. The T-RF of L. plantarum was detected in the feces of mice after the start of administration and lasted at least 31 days after the initial 7 day feeding. T-RFLP analysis was considered a useful tool to evaluate the gut colonization of probiotic L. plantarum. In order to prove that L. plantarum was from viable cells, we reisolated L. plantarum in the feces using cinnamoyl esterase activity media as the screening step. The colonization of L. plantarum KK3 in the mouse gut was confirmed by this research.

Modified T-RFLP Methods for Taxonomic Interpretation of T-RF

  • Lee, Hyun-Kyung;Kim, Hye-Ryoung;Mengoni, Alessio;Lee, Dong-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.624-630
    • /
    • 2008
  • Terminal restriction fragment length polymorphism (T-RFLP) is a method that has been frequently used to survey the microbial diversity of environmental samples and to monitor changes in microbial communities. T-RFLP is a highly sensitive and reproducible procedure that combines a PCR with a labeled primer, restriction digestion of the amplified DNA, and separation of the terminal restriction fragment (T-RF). The reliable identification of T-RF requires the information of nucleotide sequences as well as the size of T-RF. However, it is difficult to obtain the information of nucleotide sequences because the T-RFs are fragmented and lack a priming site of 3'-end for efficient cloning and sequence analysis. Here, we improved on the T-RFLP method in order to analyze the nucleotide sequences of the distinct T-RFs. The first method is to selectively amplify the portion of T-RF ligated with specific oligonucleotide adapters. In the second method, the termini of T-RFs were tailed with deoxynucleotides using terminal deoxynucleotidyl transferase (TdT) and amplified by a second round of PCR. The major T-RFs generated from reference strains and from T-RFLP profiles of activated sludge samples were efficiently isolated and identified by using two modified T-RFLP methods. These methods are less time consuming and labor-intensive when compared with other methods. The T-RFLP method using TdT has the advantages of being a simple process and having no limit of restriction enzymes. Our results suggest that these methods could be useful tools for the taxonomic interpretation of T-RFs.

PCR-Based RELP Analysis of ureC Gene for Typing of Indian Helicobacter pylori Strains from Gastric Biopsy Specimens and Culture

  • Mishra, Kanchan-Kumar;Prabhat P. Dwivedi;Prasad, Kashi-Nath;Archana Ayyagari
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.282-288
    • /
    • 2002
  • Since culture of Helicobacter pylori is relatively insensitive and cumbersome, molecular detection and typing of H. pylori isolates are gaining importance for strain differentiation. In the present study genomic DNA of 42 gastric biopsies and H. pylori isolates from corresponding patients were analyzed and compared by PCR-based RFLP assay. The 1,132-bp product representing an internal portion of ureC gene of H. pylori was amplified by PCR and digested with restriction enzymes HindⅢ, AiuⅠ and PvuⅠ. The HindⅢ, AluⅠ and PvuⅠ digestion produced 4, 7, and 2 distinguishable RFLP patterns respectively from 42-H. pylori isolates. By combining all three restriction enzyme digestions, 15 RFLP patterns were observed. However, when PCR products from 42 gastric biopsy specimens were digested by restriction enzymes HindⅢ, AluⅠ and PvuⅠ, we observed 5, 8 and 2 RFLP patterns, respectively. Patterns from 34 of 42 gastric biopsy specimens matched those of corresponding H. pylori isolates from respective patients. Patterns from the remaining eight biopsy specimens differed and appeared to represent infection with two H. pylori strains. The patterns of one strain from each of these biopsies was identical to that of the isolate from corresponding patients and the second pattern presumably represented the co-infecting strain. From the study, it appears that PCR-based RFLP analysis is a useful primary tool to detect and is distinguish H. pylori strains from gastric biopsy specimens and is superior to culture techniques in the diagnosis of infection with multiple strains of H. pylori.

Interspecific relationships of Korean Viola based on RAPD, ISSR and PCR-RFLP analyses (RAPD, ISSR과 PCR-RFLP를 이용한 한국산 제비꽃속(Viola)의 종간 유연관계)

  • Yoo, Ki-Oug;Lee, Woo-Tchul;Kwon, Oh-Keun
    • Korean Journal of Plant Taxonomy
    • /
    • v.34 no.1
    • /
    • pp.43-61
    • /
    • 2004
  • Molecular taxonomic studies were conducted to evaluate interspecific relationships in Korean Viola 34 taxa including two Japanese populations using RAPD(randornly amplified polymorphic DNA), ISSR(inter simple sequence repeat) and PCR-RFLP(restriction fragment length polymorphism) analysis. Only six and four primers out of 40 arbitrary and 12 ISSR primers were screened for 34 taxa, and were revealed 70 (98.6%) and 28 (96.6%) polymorphic bands, respectively. Fifteen restriction endonucleases produced 80 restriction sites and size variations from the large single copy region of cpDNA, 16 (20%) of which were polymorphic. The separate analyses from the RAPD, ISSR and PCR-RFLP data were incongruent in the relationships among 34 taxa, but combined data was in accordance with previous infrageneric classification system based on morphological characters, especially the subsection and series level. Section Chamaemelanium placed between subsect. Patellares and Vagimtae of section Nomimium was not formed as a distinct group. Viola alb ida complex including three very closely related taxa was recognized independent group within subsect. Patellares in combined data tree. This result strongly suggested that they should be treated to series Pinmtae. RAPD analysis was very useful to clarify the interspecific relationships among the species of Korean Viola than ISSH and PCR-RFLP analyses.

Phylogenetic Analysis of Bacterial Diversity in the Marine Sponge, Asteropus simplex, Collected from Jeju Island (제주도에서 채집한 해양 해면, Asteropus simplex의 공생세균에 관한 계통학적 분석)

  • Jeong, In-Hye;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.275-283
    • /
    • 2012
  • Culture-dependent RFLP and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Asteropus simplex collected from Jeju Island. A total of 120 bacterial strains associated with the sponge were cultivated using modified Zobell and MA media. PCR amplicons of the 16S rDNA from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rDNA sequences derived from RFLP patterns showed more than 94% similarities compared with known bacterial species, and the isolates belonged to five phyla, Alphaproteobacteria, Gammaproteobacteria Actinobacteria, Bacteroidetes, and Firmicutes, of which Gammaproteobacteria was dominant. DGGE fingerprinting of 16S rDNAs amplified from the sponge-derived total gDNA showed 12 DGGE bands, and their sequences showed more than 90% similarities compared with available sequences. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of seven phyla, including Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Actinobacteira, Chloroflexi, and Nitrospira. Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were commonly found in bacteria associated with A. simplex by both RFLP and DGGE methods, however, overall bacterial community in the sponge differed depending on the analysis methods. Sponge showed more various bacterial community structures in culture-independent method than in culture-dependent method.

Comparative Analysis of the Community of Culturable Bacteria Associated with Sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP (16S rDNA-RFLP에 의한 Spirastrella abata와 Spirastrella panis 해면에 서식하는 배양가능한 공생세균 군집의 비교)

  • Cho, Hyun-Hee;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • A cultivation-based approach was employed to compare the culturable bacterial diversity associated with two phylogenetically closely related marine sponges, Spirastrella abata and Spirastrella panis, which have geologically overlapping distribution patterns. The bacteria associated with sponge were cultivated using MA medium supplemented with 3% sponge extracts. Community structures of the culturable bacteria of the two sponge species were analyzed with PCR-RFLP (restriction fragment length polymorphism) based on 16S rDNA sequences. The RFLP fingerprinting of 16S rDNA digested with HaeIII and MspI, revealed 24 independent RFLP types, in which 1-5 representative strains from each type were partially sequenced. The sequence analysis showed >98.4% similarity to known bacterial species in public databases. Overall, the microbial populations of two sponges investigated were found to be the members of the classes; Alphaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. The Alphaproteobacteria were predominant in the bacterial communities of the two sponges. Gammaproteobacteria represented 38.5% of bacterial community in S. abata. Whereas only 1.6% of this class was present in S. panis. Bacillus species were dominat in S. panis. Bacillus species were found to be 44.3% of bacterial species in S. panis, while they were only 9.7% in S. abata. It is interesting to note that Planococcus maritimus (8.1%, phylum Firmicutes) and Psychrobacter nivimaris (28.9%, phylum Gammaproteobacteria) were found only in S. abata. This result revealed that profiles of bacterial communities from the sponges with a close phylogenetic relationship were highly species-specific.

Identification of Salted Opossum Shrimp Using COI-based Restriction Fragment Length Polymorphism (COI 기반 제한효소 절편 길이 다형성(RFLP)을 이용한 새우젓 분석)

  • Park, Ju Hyeon;Moon, Soo Young;Kang, Ji Hye;Jung, Myoung Hwa;Kim, Sang Jo;Choi, Hee Jung
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.66-72
    • /
    • 2021
  • This study developed a species identification method for the salted opossum shrimp of Acetes japonicus, A. chinensis (Korea, China), A. indicus (I, II), and Palaemon gravieri based on PCR-RFLP markers. Genomic DNA was extracted from the salted opossum shrimp. The COI gene was used to amplify 519 base pairs (bp) using specific primers. The amplified products were digested by Acc I and Hinf I, and the DNA fragments were separated by automated electrophoresis for RFLP analysis. When the amplified DNA product (519 bp) was digested with Acc I, A. japonicus, A. chinensis (Korea), and A. indius (II) showed two fragments, whereas a single band of 519 bp was detected in A. chinensis (China) and A. indius (I). Also, in the RFLP patterns digested by Hinf I, A. chinensis (Korea) and A. chinensis (China) showed a single band of 519 bp, while two fragments were observed in A. japonicus and A. indius (I) and four fragments in A. indius (II). The PCR amplicon of P. gravieri was digested by Acc I into 3 bands of 271, 202, and 46 bp and by Hinf I into a single band of 519 bp. Therefore, salted opossum shrimp-specific RFLP markers showing distinct differences between four species and two sub-species by PCR-RFLP analysis. Thus, the PCR-RFLP markers developed in this study are a good method for identifying the six types of salted opossum shrimp.