• Title/Summary/Keyword: RF-type

Search Result 841, Processing Time 0.026 seconds

Fabrication and Analysis of Thin Film Supercapacitor using a Cobalt Oxide Thin Film Electrode (코발트 산화물 박막을 이용한 박막형 슈퍼 캐패시터의 제작 및 특성평가)

  • Kim, Han-Gi;Im, Jae-Hong;Jeon, Eun-Jeong;Seong, Tae-Yeon;Jo, Won-Il;Yun, Yeong-Su
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.339-344
    • /
    • 2001
  • An all solid-state thin film supercapacitor (TFSC) with Co$_3$O$_4$/LiPON/Co$_3$O$_4$ structure was fabricated on Pt/Ti/Si substrate using Co$_3$O$_4$ thin film electrode. Each Co$_3$O$_4$ film was grown by reactive dc reactive magnetron sputtering with increasing $O_2$/[Ar+O$_2$] ratio. Amorphous LiPON electrolyte film was deposited on Co$_3$O$_4$/Pt/Ti/Si in pure nitrogen ambient by using reactive rf magnetron sputtering. The electrochemical behavior of the Co$_3$O$_4$/LiPON/Co$_3$O$_4$ multi-layer structures exhibits a behavior of a bulk-type supercapacitor, even though much lower capacity (from 5 to 25 mF/$\textrm{cm}^2$-$\mu\textrm{m}$) than that of the bulk one. It was found that the TFSC showed a fairly constant discharge capacity with a constant current of 50 $\mu\textrm{A}/\textrm{cm}^2$ at the cut-off voltage 0-2V during 400 cycles. It is shown that the electrochemical behavior of the Co$_3$O$_4$/LiPON/Co$_3$O$_4$ TFSC is dependent upon the sputtering gas ratio. The capacity dependency of electrode films on different gas ratios was explained by different structural, electrical, and surfacical properties.

  • PDF

Physicochemical Characteristics on Main and Fine root of Ginseng Dried by Various Temperature with Far-Infrared drier (원적외선 건조온도에 따른 백삼의 주근과 세근의 이화학적 특성)

  • Lee, Ka-Soon;Kim, Gwan-Hou;Kim, Hyun-Ho;Seong, Bong-Jae;Lee, Hee-Chul;Lee, Young-Gu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • To find up using of more efficient white ginseng, white ginseng was dried on various temperature (70, 80, 90,100, 110, 120, 130 and $140^{\circ}C$) with far-infrared drier and analyzed the composition of ginsenoside, carbohydrate, organic acid content and color. The type of ginseng shape was sliced and dried main and fine root, separately. As heating temperature increased, total ginsenoside content increased on main root, its content was the highest at $130^{\circ}C$, while decreased on fine root. Soluble carbohydrate content was the highest at $70^{\circ}C$ both on main and fine root. Increase of Re, Rc and Rb2 content was increased more high at $130^{\circ}C$, especially. But on fine root, content of Rg1, Rg3, Rf and Rb3 was increased and Re, Rc,Rb1 and Rb2 were decreased by the increased of temperature. As heating temperature increased, lightness of both main and fine root were decreased. Redness and yellowness of both main and fine root was increased to $120^{\circ}C$ and $100^{\circ}C$, respectively and decreased over this temperature.

Preparation of Bismuth Telluride Thin Films using RF magnetron sputtering and Study on Their Thermoelectric Properties (RF 마그네트론 스퍼터링을 이용한 Bismuth Telluride 박막의 제조와 그 열전 특성 연구)

  • Kim, Dong-Ho;Lee, Gun-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.215-221
    • /
    • 2005
  • Thermoelectric bismuth telluride thin films were prepared on $SiO_{2}$/Si substrate with co-sputtering of bismuth and tellurium targets. The effects of deposition temperature on surface morphology, crystallinity and electrical transport properties were investigated. Hexagonal crystallites were clearly visible at the surface of films deposited above $290 ^{\circ}C$. Change of dominant phase from rhombohedral $Bi_2Te_3$ to hexagonal BiTe was confirmed with X-ray diffraction analysis. The deviation from stoichiometric composition at high deposition temperature resulted in the change of structural and electrical characteristics. Seebeck coefficients of all samples have negative value, indicating the prepared $Bi_XTe_Y$ films are n-type thermoelectric. Optimum of Seebeck coefficient and power factor were obtained at the deposition temperature of $225 \^{circ}$C (about -55 $\mu$V/K and $3\times10^{-4}$ W/$k^{2}$m, respectively). Deterioration of thermoelectric properties at higher temperature.

Magnetic and Magneto-Optical Properties of $Mn_{1-x}Cr_xPt_3$ Ordered Alloy Films ($Mn_{1-x}Cr_xPt_3$ 박막의 자기 및 자기광학 특성)

  • 박문기;조재경
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.374-379
    • /
    • 1998
  • $Mn_1-xCr_xPt_3$ alloy films have been prepared by depositing (Mn, Cr)/Pt multilayers using a rf magnetron sputterer followed by heat treatment. Small and wide angle x-ray diffractometry, magnetic hysteresis loops and Kerr rotation angle spectra of the films have been measured and used to investigate structural, magnetic and magneto-optic properties of the films. The films had a crystal structure of ordered AuCu$_3$ type and the strong preferred orientation of a (111)plane parallel to the film surface. The saturation magnetization of the films was decreased with Cr content reaching almost zero near x=0.58 and then increased for further increasement of Cr content up to x=0.77 over that stayed almost constant. This indicated that Cr atoms were antiferromagnetically coupled with Mn atoms. The magnetic easy axis of MnPt$_3$(x=0) film was parallel to the film surface but those of the films with x$\geq$0.58 increased as Cr content increased reaching about 4 kOe at x=1(CrPt$_3$). The dependence of the Kerr rotation angle on the Cr content was similar to that of the saturation magnetization on the Cr content. The films with x=0.77 and x=1 showed the larger Kerr rotation angle at the wavelengths of near infrared compared to the magneto-optic recording medium, TbFeCo, currently being used.

  • PDF

Evaluation of Applicability of Sea Ice Monitoring Using Random Forest Model Based on GOCI-II Images: A Study of Liaodong Bay 2021-2022 (GOCI-II 영상 기반 Random Forest 모델을 이용한 해빙 모니터링 적용 가능성 평가: 2021-2022년 랴오둥만을 대상으로)

  • Jinyeong Kim;Soyeong Jang;Jaeyeop Kwon;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1651-1669
    • /
    • 2023
  • Sea ice currently covers approximately 7% of the world's ocean area, primarily concentrated in polar and high-altitude regions, subject to seasonal and annual variations. It is very important to analyze the area and type classification of sea ice through time series monitoring because sea ice is formed in various types on a large spatial scale, and oil and gas exploration and other marine activities are rapidly increasing. Currently, research on the type and area of sea ice is being conducted based on high-resolution satellite images and field measurement data, but there is a limit to sea ice monitoring by acquiring field measurement data. High-resolution optical satellite images can visually detect and identify types of sea ice in a wide range and can compensate for gaps in sea ice monitoring using Geostationary Ocean Color Imager-II (GOCI-II), an ocean satellite with short time resolution. This study tried to find out the possibility of utilizing sea ice monitoring by training a rule-based machine learning model based on learning data produced using high-resolution optical satellite images and performing detection on GOCI-II images. Learning materials were extracted from Liaodong Bay in the Bohai Sea from 2021 to 2022, and a Random Forest (RF) model using GOCI-II was constructed to compare qualitative and quantitative with sea ice areas obtained from existing normalized difference snow index (NDSI) based and high-resolution satellite images. Unlike NDSI index-based results, which underestimated the sea ice area, this study detected relatively detailed sea ice areas and confirmed that sea ice can be classified by type, enabling sea ice monitoring. If the accuracy of the detection model is improved through the construction of continuous learning materials and influencing factors on sea ice formation in the future, it is expected that it can be used in the field of sea ice monitoring in high-altitude ocean areas.

A Low-pass filter design for suppressing the harmonics of 2.4GHz RFID tag (2.4GHz RFID 태그용 고조파 억제를 위한 저역통과필터의 설계)

  • Cho, Young Bin;Kim, Byung-Soo;Kim, Jang-Kwon
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.59-64
    • /
    • 2002
  • In the RFID system using ISM-band, The tag mounted at the object has used the DC power by rectifying the RF signals of the small antenna for operating the micro-controller and memory. The performance of the tag would be reduced because of the second harmonics generated by the nonlinearity of the semiconductor and the spurious signal excited the high order mode of the antenna. This paper has realized the novel type low-pass filter with "the Stub-I type DGS slot structure" to improve the efficiency of the tag by suppressing the harmonics. The optimized frequency character at the pass-band/stop-band has obtained by tuning the stub width and slit width of I type slot. The measured result of the LPF has the cutoff frequency 3.25 GHz, the insertion loss about -0.29~-0.3 dB at pass-band 2.4 GHz~2.5 GHz, the return loss about -27.688~-33.665 dB at pass-band with a good performance, and the suppression character is about -19.367 dB at second harmonics frequency 4.9 GHz. This DGS LPF may be applied the various application as the RFID, WLAN to improve the efficiency of the system by suppressing the harmonics and spurious signals. 

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

Purification of Xylogone sphaerospora ${\beta}$-mannanase and Growth Activity of Bifidobacterium spp. by Konjac Glucomannan Hydrolysates (Xylogone sphaerospora 유래 ${\beta}$-mannanase 정제 및 Konjac Glucomannan 가수분해 올리고당의 중합도별 Bifidobacterium spp.에 대한 증식활성)

  • Lee, Hee-Jung;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.159-163
    • /
    • 2008
  • Xylogone sphaerospora ${\beta}$-mannanase was purified by Sephadex G-100 column chromatography. The specific activity of the purified enzyme was 8.44 units/ml protein, representing an 56.27-folds purification of the original crude extract. The final preparation thus obtained showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight was determined to be 42kDa. Konjac glucomannan was hydrolyzed by the purified ${\beta}$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography. The main hydrolysates were composed of D.P. (Degree of Polymerization) 3 and 4 glucomannooligosaccharides. For elucidate the structure of D.P 3 and 4 glucomannooligosaccharides, sequential enzymatic action was performed. D.P 3 and 4 were identified as M-G-M and M-M-G-M (G- and M- represent glucosidic and mannosidic link-ages). To investigate the effects of konjac glucomannooligosaccharides on in vitro growth of Bifido-bacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum and B. breve. Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 3 and D.P. 4 glucomannooligosaccharides, respectively. B. longum and B. bifidum grew up 3.9-fold and 2.8-fold more effectively by the treatment of D.P. 4 glucomannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 4 was more effective than D.P. 3 glucomannooligosaccharide on the growth of Bifidobacterium spp.

Electrical Characteristics of Copper Circuit using Inkjet Printing (잉크젯 프린팅 방식으로 형성된 구리 배선의 전기적 특성 평가)

  • Kim, Kwang-Seok;Koo, Ja-Myeong;Joung, Jae-Woo;Kim, Byung-Sung;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Direct printing technology is an attractive metallization method, which has become immerging as "Green technology" to the conventional photolithography, on account of low cost, simple process and environment-friendliness. In order to commercialize the printed electronics in industry, it is essential to evaluate the electrical properties of conductive circuits using direct printing technology. In this contribution, we focused on the electrical characteristics of inkjet-printed circuits. A Cu nanoink was inkjet-printed onto a Bisaleimide triazine(BT) substrate with parallel transmission line(PTL) and coplanar waveguide(CPW) type, then was sintered at $250^{\circ}C$ for 30 min. We calculated the resistivity of printed circuits through direct current resistance by the measurement of I-V curve: the resistivity was approximately 0.558 ${\mu}{\Omega}{\cdot}cm$ which is about 3.3 times that of bulk Cu. Cascade's probe system in the frequency range from 0 to 30 GHz were employed to measure the Scattering parameter(S-parameter) with or without a gap between the substrate and the probe station chuck. The result of measured S-parameter showed that all printed circuits had over 5 dB of return loss in the entire frequency range. In the curve of insertion loss, $S_{21}$, showed that the PTL type circuits had better transmission of radio frequency (RF) than CPW type.

Fabrication and Characteristics of Epoxy Resin-Type Based Neutron Shielding Materials (에폭시수지계 중성자 차폐재 제조 및 특성)

  • Cho, Soo-Haeng;Kim, Ik-Soo;Do, Jae-Bum;Ro, Seung-Gy;Park, Hyun-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.457-463
    • /
    • 1998
  • New neutron shielding materials, KNS-201, KNS-301 and KNS-601 have been fabricated to be used for radioactive material shipping and storage cask. The base materials are a modified and a hydrogenated bisphenol- A type and novolac type epoxy resin, and aluminium hydroxide and boron carbide are added. These shielding materials offer good fluidity at processing, which makes it possible to form this resin shield into complicated geometric shapes such as radioactive material shipping and storage cask. Several measurements were made for the shielding materials to evaluate the thermal and mechanical properties and radiation resistance. The properties of the shielding materials are as follows: onset temperatures 2S7~28$0^{\circ}C$, thermal conductivities 0.9S~1.14W/m. K, thermal expansion coefficients 0.77~1.26x$10_{-6}{\circ}C_{-1}$, combustion characteristics < 80$0^{\circ}C$, ATB(average time of burning) < 5sec, AEB(average extent of burning) < 5mm, tensile strengths 2.5~3.2kg/$\textrm{mm}^2$, compressive strengths 13.2~1S.2kg/$\textrm{mm}^2$, flexural strengths 5.2 -6.4kg/$\textrm{mm}^2$. In general, the concerned properties of KNS-201, KNS-301 and KNS-601 were revealed to be better than those of NS-4- FR. foreign neutron shielding material. It is also observed that the radiation resistance of KNS- 601 was better than those of KNS-201 and KNS-301.

  • PDF