Browse > Article

Purification of Xylogone sphaerospora ${\beta}$-mannanase and Growth Activity of Bifidobacterium spp. by Konjac Glucomannan Hydrolysates  

Lee, Hee-Jung (Department of Food and Bioengineering, Kyungwon University)
Park, Gwi-Gun (Department of Food and Bioengineering, Kyungwon University)
Publication Information
Applied Biological Chemistry / v.51, no.3, 2008 , pp. 159-163 More about this Journal
Abstract
Xylogone sphaerospora ${\beta}$-mannanase was purified by Sephadex G-100 column chromatography. The specific activity of the purified enzyme was 8.44 units/ml protein, representing an 56.27-folds purification of the original crude extract. The final preparation thus obtained showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight was determined to be 42kDa. Konjac glucomannan was hydrolyzed by the purified ${\beta}$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography. The main hydrolysates were composed of D.P. (Degree of Polymerization) 3 and 4 glucomannooligosaccharides. For elucidate the structure of D.P 3 and 4 glucomannooligosaccharides, sequential enzymatic action was performed. D.P 3 and 4 were identified as M-G-M and M-M-G-M (G- and M- represent glucosidic and mannosidic link-ages). To investigate the effects of konjac glucomannooligosaccharides on in vitro growth of Bifido-bacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum and B. breve. Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 3 and D.P. 4 glucomannooligosaccharides, respectively. B. longum and B. bifidum grew up 3.9-fold and 2.8-fold more effectively by the treatment of D.P. 4 glucomannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 4 was more effective than D.P. 3 glucomannooligosaccharide on the growth of Bifidobacterium spp.
Keywords
Bifidobacterium spp.${\beta}$-mannanase; Konjac glucomannan;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Kobayashi, Y., Echizen, R. and Mutai, M. (1984) Intestinal flora and dietary factors. Processingsof the 4th RIKEN symposium on intestinal flora. Japan Scientific Societies press. Japan Scientific Societies press, Tokyo. p 69
2 Ohtsuka K., Y. Benno, Y. K. Endo, H. Ueda, O. Ozawa, and T. Mitsuoka. (1989) Effect of 4'-galactosyllactose intake on human fecal microflora. Bifidus 2, 143-149
3 Duffand, G. D., C. M. McCutchen, P. Leduc, K. N. Parker, and R. M. Kelly. (1997) Purification and characterization of extremely thermostable $\beta$-mannanase, $\beta$-mannosidase, and $\alpha$- galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Appl. Environ. Microbiol. 63, 169-177
4 Kusakabe, I., R. Takahashi, S. Kusama, K. Murakami, A. Maekawa, and T. Suzuki. (1985) Struture of the glucomannooligosaccharides resulting from the hydrolysis of konjac glucomannan produced by a $\beta$-mannanase from Streptomyces sp., Agic. Biol. Chem. 48, 2943-2950
5 Choi, J. Y. and G. G. Park. (2004) Purification of Bacillus sp. $\beta$-mannanase and the growth activity of Bifidobacterium spp. by guar gum hydrolysates. Kor. J. Microbiol. Biotechnol. 32, 117-122
6 Miller, G. L. (1959) Use of dinitrosalicylic acid regent for determination of reducing sugar. Anal. Chem. 31, 426-431   DOI
7 Gyrgy, P., Norris, R. F. and Rose, C. S. (1954) Bifidus factor. I. Avariant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 4, 193-198
8 Shimizu, K. and M. Ishihara. (1983) Isolation and Characterization of oligosaccharides from the hydrolyzate of larch wood glucomannan with endo-$\beta$-D-mannanase. Agr. Biol. Chem. 47, 949-955
9 Zama, M., I. Kusakabe, G. G. Park, K. Tubaki, and K. Murakami. (1988) Specificity of $\beta$-mannanase from Penicillium purpurogenum for konjac glucomannan, Agric. Biol. Chem. 52, 519-524
10 Park, G. G., S. Y. Lee, B. K. Park, S. S. Ham, and J. H. Lee. (1991) Characteristic features of an $\alpha$-galactosidase from Penicillium purpurogenum, J. Microbiol. Biotechnol. 2, 90-98
11 Deya, A. M., K. Nojiri, and S. Igarashi. (1982) Studies on the application of galactosyl lactose for infant formula. Yukijirushi Nyugyo Giiyatsu Kenkyusho Hokoku. 79, 19-26
12 Hoffman, K. and Bircher, J. (1969) Ver nderungen der bakteriellen Darmbesiedlung nach Lactulose-gaben. Schweiz Med Wschr. 99, 608-613
13 Moon, J. W., S. H. Choi, Y. K. Shin, S. W. Lee, and K. H. Kang. (1998) Effect on the growth of Bifidobacterium spp. by transgalactooligosaccharides produced with $\beta$-galactosidase. Kor. J. Dairy Sci. 20, 283-289
14 Laemmli, U. K. (1970) Cleavage of struture protein during the assembly of head bacteriophage TA. Nature 227, 680-685   DOI   ScienceOn
15 Shimokawa, T., S. Toshida, I. Kusakabe, T. Takenchi, and K. Murata. (1997) Isolation and quantification of alginate-derived oligouronic acids by fluorphore-assisted carbohydrate electrophoresis, Carbohydr. Res. 299, 95-98   DOI   ScienceOn
16 Dekker, R. F. H. (1983) Bioconversion of hemicellulose; aspect of hemicellulase production by Trichoderma reesei QM 9414 and enzymatic saccharification of hemicellulose. Biotechnol. Bioeng. 25, 1127-1146   DOI   ScienceOn
17 McCleary, B. V. (1982) Purification and properties of a mannoside mannohydrolase from guar, Carbohydr. Res. 101, 74-79
18 Kim, Y. J. and G. G. Park. (2005) Identification and growth activity to Bifidobacterium spp. of locust bean gum hydrolysates by Trichoderma harzianum $\beta$-mannanase. J. Korean Soc. Appl. Biol. Chem. 48, 364-369
19 Park. S. E., H. J. Lee, S. O. Kim, J. B. Kang, and G. G. Park. (2007) Growth activity of Bifidobacterium spp. by D.Ps of locust bean gum galactomannan hydrolysates from Trichoderma harzianum $\beta$-mannanase. Food Engineering Progress. 11, 279-283
20 Lowry, O., H. Rosebrough, N. J. Fan, A. L. and R. J. Randall. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 271-275