• Title/Summary/Keyword: RF power inductively coupled plasma

Search Result 204, Processing Time 0.028 seconds

Effect of RF Bias on Plasma Parameters and Electron Energy Distribution in RF Biased Inductively Coupled Plasma

  • Lee, Hyo-Chang;Chung, Chin-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.492-492
    • /
    • 2012
  • RF biased inductively coupled plasma (ICP) has been widely used in various semiconductor etching processes and laboratory plasma researches. However, almost researches for the RF bias have been focused on the controls of dc self-bias voltages, even though the RF bias can change plasma parameters, such as electron temperature, plasma density, electron energy distribution (EED), and their spatial distributions. In this study, we report on the effect of the RF bias on the plasma parameters and the EEDs with various external parameters, such the RF bias power, the ICP power, the gas pressure, the gas mixture, and the frequency of RF bias. Our study shows the correlation between the RF bias and the plasma parameters and gives a crucial key for the understanding of collisionless electron heating mechanism in the RF biased ICP.

  • PDF

Analysis of Electrical Property on Inductively Coupled Ar Plasma for Gas Pressure (유도결합형 Ar 플라즈마의 압력에 따른 전기적 특성분석)

  • 조주웅;이영환;김광수;허인성;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.133-136
    • /
    • 2004
  • Low-Pressure inductively coupled RF discharge sources have important industrial applications mainly because they can provide a high-density electrodeless plasma source with low ion energy and low power loss. In an inductive discharge, the RF power is coupled to the plasma by an electromagnetic interaction with the current flowing in a coil. In this paper, the experiments have been focussed on the electric characteristic and carried out using a single Langmuir probe. The internal electric characteristics of inductively coupled Ar RF discharge at 13.56(MHz) have been measured over a wide range of power at gas pressure ranging from 1∼70(mTorr).

Optical E-H Transition Properties of Inductively Coupled Plasma with Ar Gas Pressure and RF Pourer (Ar 가스 압력과 RF 전력변화에 따른 유도결합형ㆍ플라즈마 E-H모드 변환의 광학적 특성)

  • 허인성;조주웅;이영환;김광수;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.20-23
    • /
    • 2004
  • In this paper, the emission properties of electrodeless fluorescent lamp were discussed using the inductively coupled plasma. To transmit the electromagnetic energy into the chamber, a RF power of 13.56 [MHz] was applied to the antenna and considering the Ar gas pressure and the RF electric power change, the emission spectrum, Ar I line, luminance were investigated. At this time, the input parameter for ICP RF plasma, Ar gas pressure and RF power were applied in the range of 10∼60 [mTorr], 10∼300 [W], respectively. From emission intensity and lumnance intensity results, the mode transition from E-mode to H-mode was observed. This implies that this method can be used to find an optimal RF power for efficient light illumination in an electrodeless fluorescent lamp.

Electrical and Optical Characteristics of Inductively Coupled Plasma by Ar Gas Pressure and Rf Power (Ar 가스 압력과 RF 전력에 따른 유도결합형 플라즈마의 전기적 및 광학적 특성)

  • 최용성;허인성;이영환;박대희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.560-566
    • /
    • 2004
  • In this paper, the electrical and emission properties of electrodeless fluorescent lamp were discussed using the inductively coupled plasma (ICP) with the variation of argon gas pressure and RF power. The RF output was applied to the antenna in the range of 5∼50 W at 13.56 MHz. The internal plasma voltage of the chamber and the probe current were measured while varying the supply voltage to the Langmuir probe in the range of -100V∼+100V. When the pressure of argon gas was increased, electric current was decreased. There was a significant electric current increase from 10 to 30 W. Also, when the RF power was increased, electron density was increased. Also, the emission spectrum, Ar- I lins, luminance were investigated. At this time, the input parameter for ICP RF plasma, Ar gas pressure and RF power were applied in the range of 10∼60 mTorr, 10∼300 W, respectively. This implies that this method can be used to find an optimal RF power for efficient light illumination in an electrodeless fluorescent lamp.

Electrical Properties of Plasma According to Gas Pressure and RF Power of Xe-Inductively Coupled Plasma (유도결합형 제논의 가스압력 및 RF전력에 따른 플라즈마의 전기적 특성)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.43-47
    • /
    • 2006
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma (ICP). As results at several dependences of 20~100mTorr Xenon pressure, the brightness of discharge tube was higher (4,900 $cd/m^2$) than other conditions when Xe pressure was 20mTorr and RF power was 200W. In that case, the electron temperature and density were 3.58eV and $3.56{\times}10^{12}cm^2$, respectively. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF

Luminescence Properties of Argon and Neon Gas Using an Inductively Coupled Plasma (유도결합형 Ar, Ne 가스에서의 플라즈마 발광 특성)

  • Her, In-Sung;Lee, Young-Hwan;Lee, Jong-Chan;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.220-223
    • /
    • 2004
  • Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. Optical characteristics significantly depend on the RF power and gas pressure of the plasma. This paper describes the measurement of luminance as a function of RF power and gas pressure with a goal of finding optimal operating conditions of the electrodeless lamp. The gas pressure was varied from 10[mTorr] to 300[mTorr] or 500[mTorr] and the RF power was varied from 10[W] to 200[W]. It was found that the luminance tends to be decreased when argon and neon pressure is increased, and the luminance is increased as RF power is increased. It was also found that the luminance per unit RF power is high when the argon and neon pressure is low and when the RF power is in the range of $30[W]{\sim}40[W]$ or 10[W].

  • PDF

Ar Gas properties of Inductively Coupled Plasma for Input Power (유도결합형 플라즈마에서 압력에 따른 Ar Gas의 특성분석)

  • Jo, Ju-Ung;Lee, Y.H.;Her, In-Sung;Kim, Kwang-Soo;Choi, Yong-Sung;Lee, Jong-Chan;Park, Dea-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1704-1706
    • /
    • 2003
  • Low-Pressure inductively coupled RF discharge sources have important industrial applications mainly because they can provide a high-density electrodeless plasma source with low ion energy and low power loss. In an inductive discharge, the RF power is coupled to the plasma by an electromagnetic interaction with the current flowing in a coil. In this paper, the experiments have been focussed on the electric characteristic and carried out using a single Langmuir probe. The internal electric characteristics of inductively coupled Ar RF discharge at 13.56 [MHz] have been measured over a wide range of power at gas pressure ranging from $1{\sim}70$ [mTorr].

  • PDF

Dry Etching Characteristics of GaN using a Planar Inductively Coupled CHsub $CH_4/H_2/Ar$ Plasma (평판 유도 결합형 $CH_4/H_2/Ar$ 플라즈마를 이용한 GaN 건식 식각 특성)

  • Kim, Mun-Yeong;Baek, Yeong-Sik;Tae, Heung-Sik;Lee, Yong-Hyeon;Lee, Jeong-Hui;Lee, Ho-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.616-621
    • /
    • 1999
  • A planar inductively coupled $CH_4/H_2/Ar$plasma was used to investigate dry etch characteristics of GaN as a function of input power, RF bias power, and etch gas composition. Etch rate of GaN increased with input power up to 600 W and was saturated at the higher power. Also, the etch rates increased with increasing RF bias power, composition of $CH_4$ and Ar gas. We achieved the maximum etch rate of $930{\AA}$/min at the input power 400 W, RF bias power 250 W, and operational pressure 10 mTorr. This paper shows that smooth etched surface having roughness less than 1 nm in rms can be obtained by using planar inductively coupled plasma with $CH_4/H_2/Ar$ gas chemistry.

  • PDF

Properties of Electron Temperature and Density in Inductively Coupled Plasma of Xenon (유도결합형 제논 플라즈마의 전자온도, 밀도 특성)

  • Her, In-Sung;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.41-45
    • /
    • 2005
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma(ICP). In results at several dependences of 20~100 mTorr Xenon pressure, 50~200W RF power and horizontal distribution were especially mentioned. When Xe pressure was 20mTorr and RF power was 200W, the electron temperature and density were respectively 3.58eV and $3.56{\times}10^{12}cm^{-3}$. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF

Luminance Properties of Argon Gas Using Inductively Coupled Plasma (유도 결합형 플라즈마를 이용한 아르곤 가스의 휘도 특성)

  • Lee, Young-Hwan;Her, In-Sung;Hwang, Myung-Keun;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1915-1917
    • /
    • 2004
  • Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. Optical characteristics significantly depend on the RF power and gas pressure of the plasma. This paper describes the measurement of luminance as a function of RF power and gas pressure with a goal of finding optimal operating conditions of the electrodeless lamp. The gas pressure was varied from 10 [mTorr] to 500 [mTorr] and the RF power was varied from 10 [W] to 200 [W]. It was found that the luminance tends to be decreased when argon pressure is increased, and the luminance is increased as RF power is increased. It was also found that the luminance per unit RF power is high when the argon pressure is low and when the RF power is in the range of 30 [W]${\sim}$40 [W].

  • PDF