• Title/Summary/Keyword: RF device

Search Result 639, Processing Time 0.044 seconds

Device Characteristics of GaN MESFET with the maximum frequency of 10 GHz (최대추파 10 GHz GaN MESFET의 소자특성)

  • 이원상;정기웅;문동찬;신무환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.497-500
    • /
    • 1999
  • This paper reports on the fabrication and characteristics of recessed gate GaN MESFETs fabricated using a photoelectrochemical wet etching method. The unique etching process utilizes photo-resistive mask and KOH based etchant. GaN MESFETs with successfully recessed gate structure was characterized in terms of dc and RF performance. The fabricated GaN MESFET exhibits a current saturation at $V_{DS}$ = 4 V and a pinch-off at $V_{GS}$ =-3V The peak drain current of the device is about 230mA/mm at 300 K and the value is remained almost same for 500K operation. The $f_{T}$ and $f_{max}$ from the device are 6.357Hz and 10.25 GHz, respectively.y.y.

  • PDF

A study of air-gap type FBAR device fabrication using ZnO (ZnO를 이용한 air-gap 형태의 FBAR 소자 제작에 대한 연구)

  • Park, Sung-Hyun;Lee, Soon-Beom;Shin, Young-Hwa;Lee, Neung-Heon;Lee, Sang-Hoon;Chu, Soon-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1414-1415
    • /
    • 2006
  • Air-gap type film bulk acoustic wave resonator device using ZnO for piezoelectric layer and sacrifice layer, deposited by RF magnetron sputter with various conditions, fabricated in this study. Also, membrane$(SiO_2)$ and top and bottom electrode(both Al) of piezoelectric layer deposited by RF magnetron sputter. Using micro electro mechanical systems(MEMS) technique, sacrifice layer removed and then air-gap formed. The results of each process checked by XRD, AFM, SEM to obtain good quality device.

  • PDF

Characteristics of Circular β-Ga2O3 MOSFETs with High Breakdown Voltage (>1,000 V) (높은 항복전압(>1,000 V)을 가지는 Circular β-Ga2O3 MOSFETs의 특성)

  • Cho, Kyu Jun;Mun, Jae-Kyong;Chang, Woojin;Jung, Hyun-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.78-82
    • /
    • 2020
  • In this study, MOSFETs fabricated on Si-doped, MBE-grown β-Ga2O3 are demonstrated. A Si-doped Ga2O3 epitaxial layer was grown on a Fe-doped, semi-insulating 1.5 cm × 1 cm Ga2O3 substrate using molecular beam epitaxy (MBE). The fabricated devices are circular type MOSFETs with a gate length of 3 ㎛, a source-drain spacing of 20 ㎛, and a gate width of 523 ㎛. The device exhibited a good pinch-off characteristic, a high on-off drain current ratio of approximately 2.7×109, and a high breakdown voltage of 1,080 V, which demonstrates the potential of Ga2O3 for power device applications including electric vehicles, railways, and renewable energy.

A Metasurface Improving the Fixed Function of a Ready-Made mm-Wave Antenna Module (밀리미터파 안테나 모듈 기성품의 고착화된 기능을 향상시키는 메타 재질 표면)

  • Jaewon Koh;Seongbu Seo;Yejune Seo;Sungtek Kahng
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.225-231
    • /
    • 2024
  • In this article, a new approach is presented to improve the unchangeable function of a ready-made millimeter-wave antenna system. By designing a metamaterial surface appropriate for the given geometry and fixed electrical characteristics of the device, the properties of the radiated fields of the RF product are changed to have directivity and higher antenna gain. Unlike other designs using periodic metamaterials for a single patch, an aperiodic metasurface is developed to handle two patches. For a higher received signal strength and a longer RF path in the 24 GHz-radio link, an aperiodic metasurface enhances the radiated fields by 10 dB.

Failure Mechanism Analysis of SAW Device under RF High Power Stress (RF 고전력 스트레스에 의한 SAW Device의 고장메카니즘 분석)

  • Kim, Young-Goo;Kim, Tae-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.215-221
    • /
    • 2014
  • In this paper, the improved power durability test system and method for an reliability analysis of SAW device is proposed and the failure mechanism through failure analysis is analyzed. As a result of the failure analysis using microscope, SEM and EDX, the failure mechanism of the SAW device is electromigration due to joule heating under high current density and high temperature condition. The electromigration makes voids and hillocks in the IDT electrode and the voids and hillocks can lead to short circuit and open circuit faults, respectively, increasing the insertion loss of an SAW filter. The accelerated life testing of the SAW filter for 450MHz CDMA application using the proposed power durability test system and method is carried out. $B_{10}$ lifetime of the SAW filter using Eyring model and Weibull distribution is estimated as about 98,500 hours.

The RF performance degradation in Bulk DTMOS due to Hot Carrier effect (Hot Carrier 현상에 의한 Bulk DTMOS의 RF성능 저하)

  • Park Jang-Woo;Lee Byoung-Jin;Yu Jong-Gun;Park Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.9-14
    • /
    • 2005
  • This paper reports the hot carrier induced RF performance degradation of bulk dynamic threshold voltage MOSFET (B-DTMOS) compared with bulk MOSFET (B-MOS). In the normal and moderate mode operations, the degradations of cut-off frequency $(f_{T})$ and minimum noise figure $(F_{min})$ of B-DTMOS are less significant than those of B-MOS devices. Our experimental results show that the RF performance degradation is more significant than the U performance degradation after hot carrier stressing. Also, the degradation characteristics of RF power Performance of B-DTMOS due to hot carrier effects are measured for the first time.

Small signal model and parameter extraction of SOI MOSFET's (SOI MOSFET's의 소신호 등가 모델과 변수 추출)

  • Lee, Byung-Jin;Park, Sung-Wook;Ohm, Woo-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The increasing high frequency capabilities of CMOS have resulted in increased RF and analog design in CMOS. Design of RF and analog circuits depends critically on device S-parameter characteristics, magnitude of real and imaginary components and their behavior as a function of frequency. Utilization of scaled high performance CMOS technologies poses challenges as concerns for reliability degradation mechanisms increase. It is important to understand and quantify the effects of the reliability degradation mechanisms on the S-parameters and in turn on small signal model parameters. Various physical effects influencing small-signal parameters, especially the transconductance and capacitances and their degradation dependence, are discussed in detail. The measured S-parameters of H-gate and T-gate devices in a frequency range from 0.5GHz to 40GHz. All intrinsic and extrinsic parameters are extracted from S-parameters measurements at a single bias point in saturation. In this paper we discuss the analysis of the small signal equivalent circuits of RF SOI MOSFET's verificated for the purpose of exacting the change of parameter of small signal equivalent model followed by device flame.

Study of RF Impairments in Wideband Chirp Signal Generator (광대역 첩 신호 발생기를 위한 RF 불균형 연구)

  • Ryu, Sang-Burm;Kim, Joong-Pyo;Yang, Jeong-Hwan;Won, Young-Jin;Lee, Sang-Kon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1205-1214
    • /
    • 2013
  • Recently spaceborne SAR systems are increasing image resolution and frequency. As a high quality image resolution, the wider bandwidth is required and a wideband signal generator with RF component is very complicated and RF impairments of device is increased. Therefore, it is very important to improve performance by reducing these errors. In this study, the transmission signal of the wideband signal generator is applied to the phase noise, IQ imbalance, ripple gain, nonlinear model of high power amplifier. And we define possible structures of wideband signal generator and measure the PSLR and ISLR for the performance assesment. Also, we extract error of the amplitude and phase from the waveform and use a quadratic polynomial curve fitting and examine the performance change due to nonlinear device. Finally, we apply a high power amplifier predistortion method for non-linear error compensation. And we confirm that distortion in the output of the amplifier by intermodulation component is decreased by 15 dB.

Application of Wavelet-Based RF Fingerprinting to Enhance Wireless Network Security

  • Klein, Randall W.;Temple, Michael A.;Mendenhall, Michael J.
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.544-555
    • /
    • 2009
  • This work continues a trend of developments aimed at exploiting the physical layer of the open systems interconnection (OSI) model to enhance wireless network security. The goal is to augment activity occurring across other OSI layers and provide improved safeguards against unauthorized access. Relative to intrusion detection and anti-spoofing, this paper provides details for a proof-of-concept investigation involving "air monitor" applications where physical equipment constraints are not overly restrictive. In this case, RF fingerprinting is emerging as a viable security measure for providing device-specific identification (manufacturer, model, and/or serial number). RF fingerprint features can be extracted from various regions of collected bursts, the detection of which has been extensively researched. Given reliable burst detection, the near-term challenge is to find robust fingerprint features to improve device distinguishability. This is addressed here using wavelet domain (WD) RF fingerprinting based on dual-tree complex wavelet transform (DT-$\mathbb{C}WT$) features extracted from the non-transient preamble response of OFDM-based 802.11a signals. Intra-manufacturer classification performance is evaluated using four like-model Cisco devices with dissimilar serial numbers. WD fingerprinting effectiveness is demonstrated using Fisher-based multiple discriminant analysis (MDA) with maximum likelihood (ML) classification. The effects of varying channel SNR, burst detection error and dissimilar SNRs for MDA/ML training and classification are considered. Relative to time domain (TD) RF fingerprinting, WD fingerprinting with DT-$\mathbb{C}WT$ features emerged as the superior alternative for all scenarios at SNRs below 20 dB while achieving performance gains of up to 8 dB at 80% classification accuracy.

Study on the characteristics of vias regarding forming method (다층유기물 기판 내에서의 Via 형성방법에 따른 전기적 특성 연구)

  • Youn, Je-Hyun;Yoo, Chan-Sei;Park, Se-Hoon;Lee, Woo-Sung;Kim, Jun-Chul;Kang, Nam-Kee;Yook, Jong-Gwan;Park, Jong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.209-209
    • /
    • 2007
  • Passive Device는 RF Circuit을 제작할 때 많은 면적을 차지하고 있으며 이를 감소시키기 위해 여러 연구가 진행되고 있다. 최근 SoP-L 공정을 이용한 많은 연구가 진행되고 있는데 PCB 제작에 이용되는 일반적인 재료와 공정을 그대로 이용함으로써 개발 비용과 시간 면에서 많은 장점을 가지기 때문이다. SoP-L의 또 하나 장점은 다층구조를 만들기가 용이하다는 점이다. 각 층 간에는 Via를 사용하여 연결하게 되는데, RF Circuit은 회로의 구조와 물성에 따라 특성이 결정되며, 그만큼 Via를 썼을 때 그 영향을 생각해야 한다. 본 연구에서는 multi-layer LCP substrate에 다수의 Via를 chain 구조로 형성하여 전기적 특성을 확인하였다. Via가 70um 두께의 substrate를 관통하면서 상층과 하층의 Conductor을 연속적으로 연결하게 된다. 이 구조의 Resistance와 Insertion Loss를 측정하여, Via의 크기 별 수율과 평균적인 Resistance, RF 계측기로 재현성을 확인하였다. 이를 바탕으로 공정에서의 안정성을 확보하고 Via의 크기와 도금방법에 의한 RF Circuit에서의 영향을 파악하여, 앞으로의 RF Device 개발에 도움이 될 것으로 기대한다. 특히 유기물을 이용한 다층구조의 고주파 RF Circuit에 Via를 적용할 때의 영향을 설계에서부터 고려할 수 있는 자료가 될 것이다.

  • PDF