• Title/Summary/Keyword: RF characteristics

Search Result 1,714, Processing Time 0.024 seconds

Optimization of the DC and RF characteristics in AlGaN/GaN HEMT (AlGaN/GaN HEMT 의 DC 및 RF 특성 최적화)

  • Son, Sung-Hun;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.1-5
    • /
    • 2011
  • In this paper, we investigated the characteristics of AlGaN/GaN HEMTs to optimize their DC and RF characteristics by using a two-dimensional device simulator. First, we analyzed the variation of the DC characteristics with respect to the variation of 2DEG concentrations when varying the Al mole fraction and the thickness of the AlGaN layer. Then, we examined the variation of the RF characteristics by varying the size and the location of the gate, source and drain electrodes. When the Al mole fraction increased from 0.2 to 0.45, both the transconductance and I-V characteristics increased. On the other hand, the I-V characteristics were improved but transconductance was decreased as the thickness of the AlGaN layer increased from 10nm to 50nm. In the RF characteristics, the gate length was found to be the most influential parameter, and the RF characteristics were improved when the gate length was shorten.

Hot electron induced degradation model of the DC and RF characteristics of RF-nMOSFET (Hot electron에 의한 RF-nMOSFET의 DC및 RF 특성 열화 모델)

  • 이병진;홍성희;유종근;전석희;박종태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.62-69
    • /
    • 1998
  • The general degradation model has been applied to analyze the hot carrier induced degradation of the DC and RF characteristics of RF-nMOSFET. The degradation of cut-off frequency has been severer than the degradation of bulk MOSFET drain current. The value of the degradation rate n and the degradation parameter m for RF-nMOSFET has been equal to those for bulk MOSFET. The decrease of device degradation with the increase of fingers could be explained by the large source/drain parasitic resistance and drain saturation voltage. It has been also found that the RF performance degradation could be explained by the decrease of $g_{m}$ and $C_{gd}$ and the increase of $g_{ds}$ after stress. The degradation of the DC and RF characteristics of RF-nMOSFET could be predicted by the measurement of the substrate current.t.

  • PDF

Reliability Evaluation of RF Power Amplifier for Wireless Transmitter

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.154-157
    • /
    • 2008
  • A class-E RF(Radio Frequency) power amplifier for wireless application is designed using standard CMOS technology. To drive the class-E power amplifier, a class-F RF power amplifier is used and the reliability characteristics are studied with a class-E load network. The reliability characteristic is improved when a finite-DC feed inductor is used instead of an RF choke with the load. After one year of operating, when the load is an RF choke the output current and voltage of the power amplifier decrease about 17% compared to initial values. But when the load is a finite DC-feed inductor the output current and voltage decrease 9.7%. The S-parameter such as input reflection coefficient(S11) and the forward transmission scattering parameter(S21) is simulated with the stress time. In a finite DC-feed inductor the characteristics of S-parameter are changed slightly compared to an RF-choke inductor. From the simulation results, the class-E power amplifier with a finite DC-feed inductor shows superior reliability characteristics compared to power amplifier using an RF choke.

Technical Trends in GaN RF Electronic Device and Integrated Circuits for 5G Mobile Telecommunication (5G 이동통신을 위한 GaN RF 전자소자 및 집적회로 기술 동향)

  • Lee, J.M.;Min, B.G.;Chang, W.J.;Ji, H.G.;Cho, K.J.;Kang, D.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.53-64
    • /
    • 2021
  • As the 5G service market is expected to grow rapidly, the development of high-power, high-efficiency power amplifiers for the 5G communication infrastructure is indispensable. Gallium nitride (GaN) is attracting great interest as a key device in power devices and integrated circuits due to its wide bandgap, high carrier concentration, high electron mobility, and high-power saturation characteristics. In this study, we investigate the technology trends of Ka-band GaN radio frequency (RF) power devices and integrated circuits for operation in the millimeter-wave band of recent 5G mobile communication services. We review the characteristics of GaN RF high electron mobility transistor (HEMT) devices to implement power amplifiers operating at frequencies around 28 GHz and compare the technology of foreign companies with the device characteristics currently developed by the Electronics and Telecommunication Research Institute (ETRI). In addition, the characteristics of Ka-band GaN monolithic microwave integrated circuit (MMIC) power amplifiers manufactured using various GaN HEMT device technologies are reviewed by comparing characteristics such as frequency band, output power, and output power density of integrated circuits. In addition, by comparing the performance of the power amplifier developed by ETRI, the current status and future direction of domestic GaN power devices and integrated circuit technology will be discussed.

Three Dimensional Implementation of Intelligent Transportation System Radio Frequency Module Packages with Pad Area Array (PAA(Pad Area Array)을 이용한 ITS RF 모듈의 3차원적 패키지 구현)

  • Jee, Yong;Park, Sung-Joo;Kim, Dong-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.1
    • /
    • pp.13-22
    • /
    • 2001
  • This paper presents three dimensional structure of RF packages and the improvement effect of its electrical characteristics when implementing RF transceivers. We divided RF modules into several subunits following each subunit function based on the partitioning algorithm which suggests a method of three dimension stacking interconnection, PAA(pad area array) interconnection and stacking of three dimensional RF package structures. 224MHz ITS(Intelligent Transportation System) RF module subdivided into subunits of functional blocks of a receiver(RX), a transmitter(TX), a phase locked loop(PLL) and power(PWR) unit, simultaneously meeting the requirements of impedance characteristic and system stability. Each sub­functional unit has its own frequency region of 224MHz, 21.4MHz, and 450KHz~DC. The signal gain of receiver and transmitter unit showed 18.9㏈, 23.9㏈. PLL and PWR modules also provided stable phase locking, constant voltages which agree with design specifications and maximize their characteristics. The RF module of three dimension stacking structure showed $48cm^3$, 76.9% reduction in volume and 4.8cm, 28.4% in net length, 41.8$^{\circ}C$, 37% in maximum operating temperature, respectively. We have found that three dimensional PAA package structure is able to produce high speed, high density, low power characteristics and to improve its functional characteristics by subdividing RF modules according to the subunit function and the operating frequency, and the features of physical volume, electrical characteristics, and thermal conditions compared to two dimensional RF circuit modules.

  • PDF

Design of RF Pre-Distortion Linearizer for Various Transfer Characteristics of Power Amplifiers

  • Jang, Dong-Hee;Cho, Kyoung-Joon;Kim, Sang-Hee;Kim, Jong-Heon;Shawn P. Stapleton
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.111-117
    • /
    • 2003
  • We propose a diode-based RF pre-distorter with various gain and phase characteristics, for non-linearity compensation of RF power amplifiers. This pre-distorter results in the removal of the diode- and configuration-dependent characteristics in the conventional diode-based RF pre-distorters. We have analyzed the operation principle of the proposed pre-distorter. The results show that gain and phase characteristics of the pre-distorter in all four quadrants are achieved. Several power amplifiers and test signals are used for verifying the performance of the proposed diode-based RF pre-distorter.

Design and fabrication of power detector for multi-band six-port direct conversion method (다중대역 6단자 직접변환 방식을 위한 전력 검파기 설계 및 제작)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2194-2200
    • /
    • 2010
  • In this paper, the power detectors using metamaterials were designed and fabricated for multi-band six-port direct conversion method. The RF short-stubs for power detector were designed by using metamaterials which provide multi-band characteristics. The power detectors with metamaterial RF short-stub were analyzed and fabricated by using lumped and distributed element. The measured results of metamaterial power detectors show the good agreement with the simulation results. The performance of lumped-metamaterial RF short-stub shows the insertion loss below 1 dB and the good frequency response characteristics. Also, the distributed-metamaterial RF short-stub shows the good frequency response characteristics and the insertion loss under that of lumped-metamaterial RF short-stub. The multi-band power detectors with metamaterial RF short-stub detect the input RF signal in the designed dual frequency bands very well.

Properties of the RF Sputter Deposited n-ZnO Thin-Film and the n-ZnO/p-GaN heterojunction LED (RF스퍼터링법으로 성장시킨 n-ZnO 박막과 n-ZnO/p-GaN 이종접합 LED의 특성)

  • Shin, Dongwhee;Byun, Changsub;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2013
  • The ZnO thin films were grown on GaN template substrates by RF magnetron sputtering at different RF powers and n-ZnO/p-GaN heterojunction LEDs were fabricated to investigate the effect of the RF power on the characteristics of the n-ZnO/p-GaN LEDs. For the growth of the ZnO thin films, the substrate temperature was kept constant at $200^{\circ}C$ and the RF power was varied within the range of 200 to 500W at different growth times to deposit films of 100 nm thick. The electrical, optical and structural properties of ZnO thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and by assessing the Hall effect. The characteristics of the n-ZnO/p-GaN LEDs were evaluated by current-voltage (I-V) and electroluminescence (EL) measurements. ZnO thin films were grown with a preferred c-axis orientation along the (0002) plane. The XRD peaks shifted to low angles and the surface roughness became non-uniform with an increase in the RF power. Also, the PL emission peak was red-shifted. The carrier density and the mobility decreased with the RF power. For the n-ZnO/p-GaN LED, the forward current at 20 V decreased and the threshold voltage increased with the RF power. The EL emission peak was observed at approximately 435 nm and the luminescence intensity decreased. Consequently, the crystallinity of the ZnO thin films grown with RF sputtering powers were improved. However, excess Zn affected the structural, electrical and optical properties of the ZnO thin films when the optimal RF power was exceeded. This excess RF power will degrade the characteristics of light emitting devices.

Development of a DTV RF Signal Capture, Analysis, and Regeneration System

  • Kwon Tae-Hoon;Mok Ha-Kyun;Suh Young-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.175-179
    • /
    • 2003
  • In this paper, we developed a DTV RF (Radio frequency) capture, analysis, and regeneration system adapting digital signal processing and high speed hard disk interfacing techniques and analyzed characteristics of captured RF signal. This system can be used in the various field of DTV transmission because this system can capture the receiving real DTV signals and analyze captured RF signals that contain the complex characteristics of the real-world RF environments and regenerate it in a laboratory without the performance degradation. The system can capture and replay the DTV RF signals in real-time on hard disk. Therefore, there is no limit for the amount of captured data with in the installed storage capacity. We can expect various possible applications for this system such as a tool for the development of the receiver performance analysis, design, and analysis for the DTV coverage areas, etc. This system can also be used as RF signal analyzer.

  • PDF

Fabrication Techniques & Resonance Characteristics of FBAR Devices (FBAR 소자의 제작기법 및 공진특성)

  • Yoon, Gi-Wan;Song, Hae-Il;Lee, Jae-Young;Mai, Linh;Kabir, S.M. Humayun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2090-2094
    • /
    • 2007
  • Film bulk acoustic wave resonator(FBAR) technology has attracted a great attention as a promising technology to fabricate the next-generation RF filters mainly because the FBAR technology can be integrated with current Si processing. The RF filters are basically composed of several FBAR devices connected in parallel and in series, and their characteristics depend highly on the FBAR device characteristics. Thus, it is important to design high quality FBAR devices by device or process optimization. This kind of effort may enhance the FBAR device characteristics, eventually leading to FBAR filters of high performance. In this paper, we describe the methods to more effectively improve the resonance characteristics of the FBAR devices.