• Title/Summary/Keyword: RF Receiver

Search Result 478, Processing Time 0.026 seconds

A Performance Analysis of Multi-GNSS Receiver with Various Intermediate Frequency Plans Using Single RF Front-end

  • Park, Kwi Woo;Chae, Jeong Geun;Song, Se Phil;Son, Seok Bo;Choi, Seungho;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, to design a multi-GNSS receiver using single RF front-end, the receiving performances for various frequency plans were evaluated. For the fair evaluation and comparison of different frequency plans, the same signal needs to be received at the same time. For this purpose, two synchronized RF front-ends were configured using USRP X310, and PC-based software was implemented so that the quality of the digital IF signal received at each front-end could be evaluated. The software consisted of USRP control, signal reception, signal acquisition, signal tracking, and C/N0 estimation function. Using the implemented software and USRP-based hardware, the signal receiving performances for various frequency plans, such as the signal attenuation status, overlapping of different systems, and the use of imaginary or real signal, were evaluated based on the C/N0 value. The results of the receiving performance measurement for the various frequency plans suggested in this study would be useful reference data for the design of a multi-GNSS receiver in the future.

Improved Ultrasonic Satellite System for the Localization of Mobile Robots (이동로봇의 위치측정을 위한 개선된 초음파 위성 시스템)

  • Kim, Su-Yong;Yoon, Kang-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1240-1247
    • /
    • 2011
  • The localization of mobile robot in environment is a major concern in mobile robot navigation. So, many kinds of localization techniques have been researched for several years. Among them, the positioning system using ultrasound has received attention. Most of these ultrasonic positioning systems to synchronize the transmitters and receivers are used for RF (Radio Frequencies). However, due to the use of RF, the interference problems can not be avoided and the performance of radio frequencies directly affects the positioning performance. So we proposed the ultrasonic positioning system without synchronizing RF. The proposed system is based on existing USAT (Ultrasonic Satellite System) adopted infrastructure transmitting type, and consists of transmitter and receiver synchronizing modules instead of the radio frequency transmitters and receiver. The ultrasonic transmitters and receivers are synchronized individually by the transmitter and receiver synchronizing modules. In order to calculate the bias between the transmitter and receiver synchronizing modules, new positioning algorithm similar to GPS was proposed. The positioning performance of the improved USAT without synchronizing RF and the validity of the proposed positioning algorithm are verified and evaluated by experiments.

Development of the S-band receiver for LEO satellite (저궤도 위성용 S대역 수신기의 개발)

  • Park, In-Yong;Jin, Hyun-Peel;Lee, Soon-Cheon;Sirl, Young-wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.212-217
    • /
    • 2016
  • The S-band receiver for Low Earth Orbit satellite is designed and fabricated as engineering model. Demodulator is implemented by using FPGA for extension of demodulator method. The receiver consists of RF Block, Digital demodulator and Power stage and has a Doppler tracking function to compensate a frequency shift that occur on the operation. The measured results of fabricated receiver show BER of less than $1.0{\times}10^{-6}$ at -110dBm RF input power and equipped a frequency tracking of ${\pm}100KHz$ relative to the center frequency. TID test was satisfied with the results of the test criterion is 10krad.

Design and Implementation of Combined RF Receiver Front End for GPS/GLONASS (GPS/ GLONASS 통합 수신용 RF 전단부의 설계 및 제작)

  • 주재순;염경환;이상정
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.494-502
    • /
    • 2001
  • GPS(Global Positioning System) and GLONASS(GLObal Navigation Satellite System) are basic technologies providing the information of the position and the time, and they have various applications such as navigation, survey, control, and so on. However, each GPS and GLONASS has limited number of visible satellites, and, from the view of strategy, it is undesirable to be heavily dependent on only one system. Thus, GPS/GLONASS combined receiver became required to obtain more precise navigation and system stability. In this paper, the RF front end of GPS/GLONASS combined receiver was fabricated on 130$\times$80 $\textrm{mm}^2$ PCB(Printed Circuit Board), and its system application was shown finally one chip possibility of GLONASS receiver is studied.

  • PDF

Implementation of Radio Frequency Communication System based Serial UART Communication (직렬 UART 통신 기반 rf 통신 시스템 구현)

  • Jin, Hyun-Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.257-264
    • /
    • 2014
  • Through MCU model, Radio Frequency communication is completed using universal asynchronous receiver and transmitter. The communicatin with PC and MCU is completed using RS-232 cable. At first interconnected communication with PC and MCU is necessary for RF communication because tha UART is based technique for RF communication. Program imbeded in microcontroller unit is ran during RF signal is transmitted to other RF module. Data connected with PC and MCU is transmitted between PC and MCU during PC and MCU is connected.

RF Spectrum Cognition Technologies for IoT Wireless Sensors (IoT 무선 센서를 위한 RF 스펙트럼 인지 기술)

  • Yoon, Won-Sang;Han, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.122-127
    • /
    • 2016
  • In this paper, new spectrum sensing schemes based on analog/RF front-end processing are introduced for IoT wireless sensor networks. While the conventional approaches for wireless channel cognition have been issued in signal processing area, the RF spectrum cognition concept makes it feasible to achieve cognitive wireless sensor networks (C-WSNs). The spectrum cognition at RF processing is categorized as four kinds of sensing mechanisms. Two recent reseaches are described as promising candidates for the C-WSN. One senses spectrum by the frequency discriminating receiver, the other senses and detects from the frequency selective super-regenerative receiver. The introduced systems with simple and low-power RF architectures play dual roles of channel sensing and demodulation. simultaneously. Therefore, introduced spectrum sensing receivers can be one of the best candidates for IoT wireless sensor devices in C-WSN environments.

Review on Performance Requirements, Design and Implementation of RF Transceiver for Mobile Communications

  • Lee, Il-Kyoo;Ryu, Seong-Ryeol;Oh, Seung-Hyeub;Hong, Heon-Jin
    • Information and Communications Magazine
    • /
    • v.24 no.3
    • /
    • pp.76-86
    • /
    • 2007
  • This paper describes the RF performance issues of UE RF Transceiver for W-CDMA system based on 3GPP specifications. the parameters of transmitter and receiver are derived from the viewpoint of RF performance. In order for UE to achieve high performance, the transceiver performance requirements such as ACIR, EVM, Peak Code Domain Error, spectrum emission mask, frequency error stability and TX power control dynamic range for transmitter and reference sensitivity level, blocking characteristics, noise figure, ACS, linearity, AGC dynamic range for receiver are considered. On the basis of the required parameters, the UE RF transceiver is designed and then implemented. The evaluation of RF performance is accomplished through practical test scenarios.

RF Transceiver Implementation to Evaluate the Requirements of 3G W-CDMA User Equipment (3G W-CDMA UE 요구사항 평가를 위한 RF 트랜시버 구현)

  • Il-Kyoo Lee;Seung-Hyeub Oh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.148-156
    • /
    • 2003
  • This paper describes the RF performance issues of UE for W-CDMA system based on 3 GPP specifications. The parameters of transmitter and receiver are derived from the viewpoint of RF performance. In order for UE to achieve high performance, the transceiver performance requirements such as ACLR, EVM, Peak Code Domain Error, spectrum emission mask, frequency error stability and TX power control dynamic range for transmitter and reference sensitivity level, blocking characteristics, noise figure, ACS, AGC dynamic range for receiver are considered. On the basis of the required parameters, the UE RF transceiver is implemented and then the evaluation of RF performance is accomplished through practical test scenarios.

A Study on an Efficient VDES Gain Control Method Conforming to the International Standard (국제 표준 규격에 부합하는 효율적인 VDES 이득제어 방안 연구)

  • Yong-Duk Kim;Min-Young Hwang;Won-Yong Kim;Jeong-Hyun Kim;Jin-Ho Yoo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.339-343
    • /
    • 2022
  • In this study, a method for simplifying the structure of the VDES RF receiver, and the gain control method of the receiver to comply with the international standard in this structure was described. The input level of the wanted signal and unwanted signal to the receiver was defined, and when the two signals were input, the saturation state at the ADC was checked at the receiver output. As a result of the simulation by the circuit simulator, it was satisfied that the output power of the receiver was in the SFDR region of ADC with respect to the adjacent channel interference ratio, intermodulation, and blocking level. Through this study, it was found that the structure of th proposed RF receiver conforms to the international standard.

  • PDF

Design and Performance Evaluation of GPS Spoofing Signal Detection Algorithm at RF Spoofing Simulation Environment

  • Lim, Soon;Lim, Deok Won;Chun, Sebum;Heo, Moon Beom;Choi, Yun Sub;Lee, Ju Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.173-180
    • /
    • 2015
  • In this study, an algorithm that detects a spoofing signal for a GPS L1 signal was proposed, and the performance was verified through RF spoofing signal simulation. The proposed algorithm determines the reception of a spoofing signal by detecting a correlation distortion of GPS L1 C/A code caused by the spoofing signal. To detect the correlation distortion, a detection criterion of a spoofing signal was derived from the relationship among the Early, Prompt, and Late tap correlation values of a receiver correlator; and a detection threshold was calculated from the false alarm probability of spoofing signal detection. In this study, an RF spoofing environment was built using the GSS 8000 simulator (Spirent). For the RF spoofing signal generated from the simulator, the RF spoofing environment was verified using the commercial receiver DL-V3 (Novatel Inc.). To verify the performance of the proposed algorithm, the RF signal was stored as IF band data using a USRP signal collector (NI) so that the data could be processed by a CNU software receiver (software defined radio). For the performance of the proposed algorithm, results were obtained using the correlation value of the software receiver, and the performance was verified through the detection of a spoofing signal and the detection time of a spoofing signal.