• Title/Summary/Keyword: RF Module

Search Result 480, Processing Time 0.033 seconds

Walking and Stabilization Algorithm of Biped Robot on the Uneven Ground (이족보행로봇의 비평탄지형 보행 및 자세 안정화 알고리즘)

  • Kim Yong-Tae;Noh Su-Hee;Lee Hee-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.59-64
    • /
    • 2005
  • In the paper, we propose an intelligent walking algorithm of biped robot on the uneven ground and a posture stabilization algorithm against external forces. At first, the mechanics and the control system of biped robot that can walk on the uneven ground and stand external forces are designed. We propose obstacle hurdling, incline walking. and going-up stairs algorithm by using infrared sensors and FSR sensors. Also, posture stabilization algorithm against external forces is designed using FSR sensors. Infrared sensors ate used to detect the obstacles in the working environment and FSR sensors are used to obtain the ZMP of biped robot. The developed biped robot can be controlled by the remote control system using vision system and RF module. The experimental results show that the biped robot Performs obstacle avoidance, obstacle hurdling, walking on the inclined plane, and going up stairs using the proposed walking and stabilization algorithm.

A RF MEMS Transmitter Based on Flexible Printed Circuit Boards (연성 인쇄 회로 기판을 이용한 초고주파 MEMS 송신기 연구)

  • Myoung, Seong-Sik;Kim, Seon-Il;Jung, Joo-Yong;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This paper presents the flexible MEMS transmitter based on flexible printed circuit board or FPCB, which can be transformed to arbitrary shape. The FPCB is suitable to fabricate light weight and small size modules with the help of its thin thickness. Moreover a module based on FPCB can be attached on the arbitrary curved surface due to its flexible enough to be lolled up like paper. In this paper, the flexible MEMS transmitter integrated on FPCB for a short-distance sensor network which is based on orthogonal frequency division multiplexing(OFDM) communication system is proposed. The active device of the proposed flexible MEMS transmitter is fabricated on InGaP/GaAs HBT process which has been used for power amplifier design to take advantages of high linear and high efficient characteristics. Moreover, the passive devices such as the filter and signal lines are integrated and fabricated on the FPCB board. The performance of the fabricated flexible MEMS transmitter is analyzed with EVM characteristics of the output signal.

The Fast Interlock Controller for High Power Pulse Modulator at PAL-XFEL (고전압 펄스 모듈레이터의 고속 인터록 제어)

  • Kim, S.H.;Park, S.S.;Kwon, S.J.;Lee, H.S.;Kang, H.S.;Ko, I.S.;Kim, D.S.;Seo, M.H.;Lee, S.Y.;Moon, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.818-819
    • /
    • 2015
  • PAL-XFEL 장치에 사용 할 고전압 펄스 모듈레이터 출력파워는 수 ${\mu}s$ 범위의 짧은 고전압(400 kV), 대전류(500 A) 펄스를 요구한다. 이러한 펄스파워를 얻기 위해서 PFN(Pulse Forming Network)에 에너지를 축적하고, 플라즈마 스위치인 싸이라트론을 통하여 에너지를 신속하게 클라이스트론 쪽으로 전달한다. 클라이스트론은 모듈레이터에서 공급하는 펄스 전원을 이용하여 RF를 증폭하는 대출력 고주파 증폭장치이다. 고전압 펄스 모듈레이터 제어기는 고속펄스 신호처리 모듈(Fast Pulse Signal Conditioning Module), PLC(Programmable Logic Controller)로 구성되어 있다. 고전압 펄스 모듈레이터에 사용하는 대용량 싸이라트론은 고전력을 스위칭 할 때 발생하는 스위칭 노이즈는 매우 크다. 이러한 노이즈는 모듈레이터의 출력 시그널인 빔 전압, 빔 전류, EOLC(End of Line Clipper) 전류, DC high voltage에 섞여 있으면서 신호 왜곡 및 제어장치의 고장을 유발시킨다. 이처럼 노이즈가 많이 포함되어 있는 아닐로그 신호를 깨끗한 신호(a clean signal)로 바꾸어주는 노이즈 필터링 장치인 고속펄스 신호처리 모듈을 제작하여 실험한 결과를 알아보고 모듈레이터 인터록 시스템인 PLC에서 Dynamic Interlock의 응답시간을 빠르게 하기위한 회로 수정에 대한 결과에 관하여 기술하고자 한다.

  • PDF

Simulation of Resonance Shift and Quality Factor for Opto-fluidic Ring Resonator (OFRR) Biosensors (광-유체링공진기(OFRR) 바이오센서에 관한 공진이동과 양호도의 시뮬레이션)

  • Cho, Han-Keun;Han, Jin-Woo;Yang, Gil-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • In this work, the finite element method was used to investigate the shifts of resonance frequencies and quality factor of whispering-gallery-mode (WGM) for an opto-fluidic ring resonator (OFRR) biosensor. To describe the near-field radiation transfer, the time-domain Maxwell's equations were employed and solved by using the in-plane TE wave application mode of the COMSOL Multiphysics with RF module. The OFRR biosensor model under current study includes a glass capillary with a diameter of 100 mm and wall thickness of 3.0 mm. The resonance energy spectrum curves in the wavelength range from 1545 nm to 1560 nm were examined under different biosensing conditions. We mainly studied the sensitivity of resonance shifts affected by changes in the effective thickness of the sensor resonator ring with a 3.0 mm thick wall, as well as changes in the refractive index (RI) of the medium inside ring resonators with both 2.5 mm and 3.0 mm thick walls. In the bulk RI detection, a sensitivity of 23.1 nm/refractive index units (RIU) is achieved for a 2.5 mm thick ring. In small molecule detection, a sensitivity of 26.4 pm/nm is achieved with a maximum Q-factor of $6.3{\times}10^3$. These results compare favorably with those obtained by other researchers.

The Development of Modularized Post Processing GPS Software Receiving Platform using MATLAB Simulink

  • Kim, Ghang-Ho;So, Hyoung-Min;Jeon, Sang-Hoon;Kee, Chang-Don;Cho, Young-Su;Choi, Wansik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • Modularized GPS software defined radio (SDR) has many advantages of applying and modifying algorithm. Hardware based GPS receiver uses many hardware parts (such as RF front, correlators, CPU and other peripherals) that process tracked signal and navigation data to calculate user position, while SDR uses software modules, which run on general purpose CPU platform or embedded DSP. SDR does not have to change hardware part and is not limited by hardware capability when new processing algorithm is applied. The weakness of SDR is that software correlation takes lots of processing time. However, in these days the evolution of processing power of MPU and DSP leads the competitiveness of SDR against the hardware GPS receiver. This paper shows a study of modulization of GPS software platform and it presents development of the GNSS software platform using MATLAB Simulink™. We focus on post processing SDR platform which is usually adapted in research area. The main functions of SDR are GPS signal acquisition, signal tracking, decoding navigation data and calculating stand alone user position from stored data that was down converted and sampled intermediate frequency (IF) data. Each module of SDR platform is categorized by function for applicability for applying for other frequency and GPS signal easily. The developed software platform is tested using stored data which is down-converted and sampled IF data file. The test results present that the software platform calculates user position properly.

Development of GPS Baseband Chip (GPS Baseband Chip 개발)

  • Cho, Jae-Bum;Lee, Tae-Hyoung;Lee, Yoon-Jick;Heo, Jung-Hun;Jung, Hwi-Sung;Jeong, Jun-Young;Yoon, Suk-Ki;Kim, Hak-Soo;Cho, Dong-Sik;Choi, Hoon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2313-2315
    • /
    • 2003
  • This paper presents the development methods which Samsung GPS baseband chip is called S3E4510X. Specification of S3E4510X and design methodology of baseband architecture is presented with a study of their effects. Also GPS core block and software are described in detail. We designed and implemented the test board with RF module for evaluating performance via static test dynamic test and each performance factors using live signal and CPS simulator. Test results show that our development GPS baseband chip have effectively performance for mobile handset Location Based Service (LBS) and its practical use for navigation.

  • PDF

Implementation of the Matching System between User-Centered Ubiquitous Virtual Reality and Real-World for Smart Home Control (스마트 홈 제어를 위한 사용자 중심의 유비쿼터스 가상현실과 실세계 정합시스템 구현)

  • Choi, Jae-Myeong;Lee, Hyun-Jik;Park, Ki-Hong;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.306-313
    • /
    • 2013
  • In this paper, we implemented the matching system between user-centered ubiquitous virtual reality and the real world for smart home control. Implemented system consists of the smart devices that are equipped with the ubiquitous virtual reality, the hardware for a real-world representation, and the matching software. To communication and data control, we designed the TCP/IP communication protocol, and used the WPAN-based 802.15.4 ZigBee module. The main point of proposed the authoring tool-based ubiquitous virtual reality is the user-centered environment that users can place the objects such as smart TV, home appliances similar to embellish their home structure. Some experiments are conducted so as to verify the proposed model, and as a results, the proposed matching system is well performed.

Development of a Legged Walking Robot Based on Jansen Kinetics (얀센 키네틱스를 기반으로 한 보행 로봇 개발)

  • Kim, Sun-Wook;Kim, Yeoun-Gyun;Jung, Hah-Min;Lee, Se-Han;Hwang, Seung-Gook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.509-515
    • /
    • 2010
  • In this paper, the mechanism that can walk efficiently in wet land or sand area is proposed. A vision camera is attached to the mechanism, which makes a kind of biologically inspired robot for coast guard. This visionary information enables the biologically inspired robot to react in peripheral environment by a soft-computing algorithm. In addition, the biologically inspired robot can achieve the mission appointed by a programmer connecting with outside, based on RF and Blue-tooth communication module. Therefore, the purpose of this research is the implementation of the biologically inspired robot that can operate most adaptively in sand and wet surface based on Theo Jansen mechanism.

Implementation of Ka-band Satellite Broadcasting/LNB with High Dynamic Range (Ka-band 고감도 위성방송용/LNB 최적화 설계)

  • Mok, Gwang-Yun;Lee, Kyung-Bo;Rhee, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.66-69
    • /
    • 2016
  • In this paper, we suggests a Ka-band LNB considering next-generation UHD satellite TVRO. Since Ka-band has grater attenuation than Ku-band in atmosphere, we designed the low-noise down-converter to improve receiving sensitivity and to extend a dynamic range of receiver. It aims to compensate a quality of ultra high definition transmission signal for rainfall. The low-noise block diagram consists of a three-staged amplifier (LNA), band-pass filter for deleting image (BPF), mixer and IF when considering nonlinear characteristics in the receiver RF front end module. Also, we showed a LNB through optimization processes affecting dynamic range directly in receiver FEM. Asa resuly of experiment, the gain of low-noise down-converter show between 58.5dB and 60.7dB, the noise figure has a high characteristic as 1.38dB. Finally, the phase noise of local oscillator is -63.10dBc at 100MHz offset frequency.

  • PDF

Development of High-Speed Real-Time Signal Processing Unit for Small Millimeter-wave Tracking Radar (소형 밀리미터파 추적 레이다용 고속 실시간 신호처리기 개발)

  • Kim, Hong-Rak;Park, Seung-Wook;Woo, Seon-Keol;Kim, Youn-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • A small millimeter-wave tracking radar is a pulse-based radar that searches, detects, and tracks a target in real time through a TWS (Track While Scan) method for a traps target on the sea with a large RCS running at low speed. It is necessary to develop a board equipped with a high-speed CPU to acquire and track target information through LPRF, DBS, and HRR signal processing techniques for a trap target operating various kinds of dexterous objects such as chaff and decoy, We designed a signal processor structure including DFT (Discrete Fourier Transform) module design that can perform real - time FFT operation using FPGA (Field Programmable Gate Array) and verified the signal processor implemented through performance test.