• Title/Summary/Keyword: RF Ics

Search Result 42, Processing Time 0.024 seconds

ICS RF Repeater for Marine NB-IoT Service (해상 NB-IoT 서비스를 위한 ICS RF 중계기)

  • Cho, Sin-ho;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.390-396
    • /
    • 2021
  • In this research, design and fabrication of marine repeater capable to extend communication coverage in monitoring system of fishing gear automatic identification, which is one of implementation method of the real-name electric fishing gear system declared by Ministry of Oceans and Fisheries in 2016, is reported. The proposed marine repeater is fabricated in a form of RF repeater with interference cancellation system (ICS), which can cancel the oscillation due to feedback signal between service antenna and link antenna. In design process, we secure the isolation of 30 dB between service antenna and link antenna. It is confirmed that when the level of feedback signal into repeater input be lower of 15 dB than repeater gain, error vector magnitude due to oscillation can be lower than the performance criterion of 6%, from the test verification. It is expected that the service coverage will be extended by applying the developed marine ICS RF repeater into marine IoT network including monitoring system of fishing gear automatic identification.

Performance Analysis of RF Repeater System using IP Antenna (IP 안테나를 이용한 RF 중계시스템의 성능분석)

  • Kang, Chang-Soo;Baek, Joo-Gi
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.34-40
    • /
    • 2010
  • Even if use ICS repeater in radio communication system, distance between Donor antenna and Service antenna though do much isolation degree must that shortcoming have. Proposed IP antenna to supplement this shortcoming in this paper. Result Doner antenna and isolation of Service antenna that measure through examination do 1.5m and when did direction 180 degree, Isolation confirmed that is measured 110dB. Confirmed that can unuse ICS repeater through this result and service by general RF repeater.

A Study on Digital RF System with Interference Cancellation System (간섭제거기를 적용한 디지털 RF 시스템에 관한 연구)

  • Joo, Ji-Han;Lee, Sang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1252-1263
    • /
    • 2009
  • In this paper, in order to improve a service quality and to broaden the service coverage in the mobile communication system a study on a digital RF repeater employed with an Interference Cancellation System(ICS) is performed. The digital RF repeater employed with an ICS is implemented to remove interference and feedback signals which are disadvantages of a conventional(or general) RF repeater. This thesis presents the design and experiments of the new wireless repeater. The proposed wireless repeater consists of a RF repeater mounted with digital engine. The digital ICS engine consists of a DSP and FPGA. The digital engine and RF circuit are designed into a one-piece. After developing hardware through the digital platform they are also designed and fabricated into a one-piece in order to apply a best performance repeater system. The method of removing interference and feedback signals is an adaptive IF technique employed with a LMS algorithm. The powerful performance and fast convergence speed is obtained by using this method.

High Integration Packaging Technology for RF Application

  • Lee, Young-Min
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 1999.12a
    • /
    • pp.127-154
    • /
    • 1999
  • Interconnect - Wire bonding-> Flip chip interconnect ; At research step, Au stud bump bonding seems to be more proper .Package -Plastic package-> $Z_{0}$ controlled land grid package -Flip Chip will be used for RF ICs and CSP for digital ICs -RF MCM comprised of bare active devices and integrated passive components -Electrical design skills are much more required in RF packaging .Passive Component -discrete-> integrated -Both of size and numbers of passive components must be reduced

  • PDF

Structure Optimization of ESD Diodes for Input Protection of CMOS RF ICs

  • Choi, Jin-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.401-410
    • /
    • 2017
  • In this work, we show that the excessive lattice heating problem due to parasitic pnp transistor action in the diode electrostatic discharge (ESD) protection device in the diode input protection circuit, which is favorably used in CMOS RF ICs, can be solved by adopting a symmetrical cathode structure. To explain how the recipe works, we construct an equivalent circuit for input human-body model (HBM) test environment of a CMOS chip equipped with the diode protection circuit, and execute mixed-mode transient simulations utilizing a 2-dimensional device simulator. We attempt an in-depth comparison study by varying device structures to suggest valuable design guidelines in designing the protection diodes connected to the $V_{DD}$ and $V_{SS}$ buses. Even though this work is based on mixed-mode simulations utilizing device and circuit simulators, the analysis given in this work clearly explain the mechanism involved, which cannot be done by measurements.

The Design of Smart Antenna Structures for RF Repeater (이동통신 중계기용 스마트 안테나 구조 설계)

  • Cho, Dae-Young;Kim, Kye-Won;Lee, Seung-Goo;Kim, Min-Sang;Kim, Kil-Yung;Park, Byeong-Hoon;Ko, Hak-Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2013
  • The amplification rate of a RF repeater is limited by the feedbacked signals from the same repeater. And an ICS (Interference Cancellation System) repeater has been developed to remove the feedbacked signals. The ICS repeater estimates the amplitudes and the phases of the feedbacked signals and removes the estimated feedback signals from the received input signal of the repeater. However, it requires lots of hardware complexity and this leads to the increase the cost of the repeater. Moreover, the ICS repeater can not solve the pilot pollution problems. To solve these problems, we have studied the implementation and adaptation of smart antenna system for RF repeaters. We have designed a smart antenna system with a switching beam structure in order to reduce the hardware and computational complexity. After analyzing the proposed smart antenna system, we found out that the amplification rate of the proposed repeater increases 23dB compare to the amplification rate of ICS repeater and the output SINR increases 6dB compare to the ICS repeater.

Design of ESD Protection Circuits for High-Frequency Integrated Circuits (고주파 집적회로를 위한 ESD 보호회로 설계)

  • Kim, Seok;Kwon, Kee-Won;Chun, Jung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.36-46
    • /
    • 2010
  • In multi-GHz RF ICs and high-speed digital interfaces, ESD protection devices introduce considerable parasitic capacitance and resistance to inputs and outputs, thereby degrading the RF performance, such as input/output matching, gain, and noise figure. In this paper, the impact of ESD protection devices on the performance of RF ICs is investigated and design methodologies to minimize this impact are discussed. With RF and ESD test results, the 'RF/ESD co-design' method is discussed and compared to the conventional RF ESD protection method which focuses on minimizing the device size.

A Study on Digital RF Repeaters with Interference Cancellation System

  • Han, Yong-Sik;Yang, Woon-Geun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.150-154
    • /
    • 2010
  • In this paper, the adaptive interference cancellation system (ICS) in order to cancel the feedback signal in the wireless communication system is proposed. We cancel the interference with the attenuation signal corresponding to the feedback signal and estimate the feedback signal by using Normalized Least Mean Square (NLMS) algorithm. The proposed scheme showed a better performance of interference cancellation in the measurement results.

Optimal Design of Spiral Inductors on Silicon Substrates for RF ICs

  • Moon, Yeong-Joo;Choi, Moon-Ho;Na, Kee-Yeol;Kim, Nam-Su;Kim, Yeong-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.216-218
    • /
    • 2005
  • Planar spiral inductors on silicon substrates were optimally designed using MATLAB, which is a tool to perform numerical computations with matrices. The equivalent circuit parameters of the spiral inductors were extracted from the data measured from the spiral inductors fabricated using a 0.18 $\mu\textrm{m}$ RF CMOS process. The metal width, which is a critical design parameter, was optimized for the maximum quality factor with respect to the operating frequency.

BCI Probe Emulator Using a Microstrip Coupler (마이크로스트립 커플러 구조를 이용한 BCI 프로브 Emulator)

  • Jung, Wonjoo;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1164-1171
    • /
    • 2014
  • Bulk Current Injection(BCI) test is a method of injecting current into Integrated Circuit(IC) using a current injection probe to qualify the standards of Electromagnetic Compatibility(EMC). This paper, we propose a microstrip coupler structure that can replace the BCI current injection probe that is used to inject a RF noise in standard IEC 62132-part 3 documented by International Electrotechnical Commission. Conventional high cost BCI probe has mostly been used in testing automotive ICs that use high supply voltage. We propose a compact microstrip coupler which is suitable for immunity testing of low power ICs. We tested its validity to replace the BCI injection probe from 100 MHz to 1,000 MHz. We compared the power[dBm] that is needed to generate the same level of noise between current injection probe and microstrip coupler by sweeping the frequency. Results show that microstrip coupler can inject the same level of noise into ICs for immunity test with less power.