• Title/Summary/Keyword: RCP6.0

Search Result 93, Processing Time 0.029 seconds

Assessing Climate Change Impacts on Hydrology and Water Quality using SWAT Model in the Mankyung Watershed (SWAT 모형을 이용한 기후변화에 따른 만경강 유역에서의 수문 및 수질 영향 평가)

  • Kim, Dong-Hyeon;Hwang, Syewoon;Jang, Taeil;So, Hyunchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.83-96
    • /
    • 2018
  • The objective of this study was to estimate the climate change impact on water quantity and quality to Saemanguem watershed using SWAT (Soil and water assessment tool) model. The SWAT model was calibrated and validated using observed data from 2008 to 2017 for the study watershed. The $R^2$ (Determination coefficient), RMSE (Root mean square error), and NSE (Nash-sutcliffe efficiency coefficient) were used to evaluate the model performance. RCP scenario data were produced from 10 GCM (General circulation model) and all relevant grid data including the major observation points (Gusan, Jeonju, Buan, Jeongeup) were extracted. The systematic error evaluation of the GCM model outputs was performed as well. They showed various variations based on analysis of future climate change effects. In future periods, the MIROC5 model showed the maximum values and the CMCC-CM model presented the minimum values in the climate data. Increasing rainfall amount was from 180mm to 250mm and increasing temperature value ranged from 1.7 to $5.9^{\circ}C$, respectively, compared with the baseline (2006~2017) in 10 GCM model outputs. The future 2030s and 2070s runoff showed increasing rate of 16~29% under future climate data. The future rate of change for T-N (Total nitrogen) and T-P (Total phosphorus) loads presented from -26 to +0.13% and from +5 to 47%, respectively. The hydrologic cycle and water quality from the Saemanguem headwater were very sensitive to projected climate change scenarios so that GCM model should be carefully selected for the purpose of use and the tendency analysis of GCM model are needed if necessary.

Water balance change at a transiting subtropical forest in Jeju Island

  • Kim, JiHyun;Jo, Kyungwoo;Kim, Jeongbin;Hong, Jinkyu;Jo, Sungsoo;Chun, Jung Hwa;Park, Chanwoo;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.99-99
    • /
    • 2022
  • Jeju island has a humid subtropical climate and this climate zone is expected to migrate northward toward the main land, Korea Peninsula, as temperature increases are accelerated. Vegetation type has been inevitably shifted along with the climatic change, having more subtropical species native in southeast Asia or even in Africa. With the forest composition shift, it becomes more important than ever to analyze the water balance of the forest wihth the ongoing as well as upcoming climate change. Here, we implemented the Ecosystem Demography Biosphere Model (ED2) by initializing the key variables using forest inventory data (diameter at breast height in 2012). Out of 10,000 parameter sets randomly generated from prior distribution distributions of each parameter (i.e., Monte-Carlo Method), we selected four behavioral parameter sets using remote-sensing data (LAI-MOD15A2H, GPP-MOD17A2H, and ET-MOD16A2, 8-days at 500-m during 2001-2005), and evaluated the performances using eddy-covariance carbon flux data (2012 Mar.-Sep. 30-min) and remote sensing data between 2006-2020. We simulated each of the four RCP scenarios (2.6, 4.5, 6.0, and 8.5) from four climate forcings (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5 from ISIMIP2b). Based on those 64 simulation sets, we estimate the changes in water balance resulting from the forest composition shift, and also uncertainty in the estimates and the sensitivity of the estimates to the parameters, climate forcings, and RCP scenarios.

  • PDF

Analysis on the Effects of Land Cover Types and Topographic Features on Heat Wave Days (토지피복유형과 지형특성이 폭염일수에 미치는 영향 분석)

  • PARK, Kyung-Hun;SONG, Bong-Geun;PARK, Jae-Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.76-91
    • /
    • 2016
  • The purpose of this study is to analyze the effects of spatial characteristics, such as land cover and topography, on heat wave days from the city of Milyang, which has recently drawn attention for its heat wave problems. The number of heat wave days was calculated utilizing RCP-based South Korea climate data from 2000 to 2010. Land cover types were reclassified into urban area, agricultural area, forest area, water, and grassland using 2000, 2005, and 2010 land cover data constructed by the Ministry of Environment. Topographical features were analyzed by topographic position index (TPI) using a digital elevation model (DEM) with 30 m spatial resolution. The results show that the number of heat wave days was 31.4 days in 2000, which was the highest, followed by 26.9 days in 2008, 24.2 days in 2001, and 24.0 days in 2010. The heat wave distribution was relatively higher in agricultural areas, valleys, and rural areas. The topography of Milyang contains more mountainous slope (51.6%) than flat (19.7%), while large-scale valleys (12.2%) are distributed across some of the western region. Correlation analysis between heat wave and spatial characteristics showed that the correlation between forest area land cover and number of heat wave days was negative (-0.109), indicating that heat wave can be mitigated. Topographically, flat areas and heat wave showed a positive correlation (0.305). These results provide important insights for urban planning and environmental management for understanding the impact of land development and topographic change on heat wave.

Climate Change in Corn Fields of the Coastal Region of Ecuador

  • Borja, Nicolas;Cho, Jaepil;Choi, KyungSook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.271-271
    • /
    • 2015
  • The Ecuadorian coast has two different climate regions. One is humid region where the annual rainfall is above 2000 mm and rain falls in almost all months of the year, and the other is dry region where the annual rainfall can fall below 50 mm and rainfall can be very seasonal. The agriculture is frequently limited by the seasons during the year and the availability of rainfall amounts. The corn fields in Ecuador are cultivated during the rainy season, due to this reason. The weather conditions for optimum development of corn growth require a monthly average rainfall of 120 mm to 140 mm and a temperature range of $22^{\circ}C{\sim}32^{\circ}C$ for the dry region, and a monthly average rainfall of 200 mm to 400 mm and a temperature range of $25^{\circ}C{\sim}30^{\circ}C$ for the humid area. The objective of this study is to predict how the weather conditions are going to change in corn fields of the coastal region of Ecuador in the future decades. For this purpose, this study selected six General Circulation Models (GCM) including BCC-CSM1-1, IPSL-CM5A-MR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MRIC-CGC3 with different climate scenarios of the RCP 4.5, RCP 6.0, and RCP 8.5, and applied for the period from 2011 to 2100. The climate variables information was obtained from the INAMHI (National Institute of Meteorology and Hydrology) in Ecuador for the a base line period from 1986 to 2012. The results indicates that two regions would experience significant changes in rainfall and temperature compared to the historical data. In the case of temperature, an increment of $1^{\circ}C{\sim}1.2^{\circ}C$ in 2025s, $1.6^{\circ}C{\sim}2.2^{\circ}C$ in 2055s, $2.1^{\circ}C{\sim}3.5^{\circ}C$ in 2085s were obtained from the dry region while less increment were shown from the humid region with having an increment of $1^{\circ}C$ in 2025s, $1.4^{\circ}C{\sim}1.8^{\circ}C$ in 2055s, $1.9^{\circ}C{\sim}3.2^{\circ}C$ in 2085s. Significant changes in rainfall are also projected. The rainfall projections showed an increment of 8%~11% in 2025s, 21%~33% in 2055s, and 34%~70% in 2085s for the dry region, and an increment of 2%~10%, 14%~30% and 23%~57% in 2025s, 2055s and 2085s decade respectively for humid region.

  • PDF

A Study on Statistical Characteristics for Extreme Rainfall based on CMIP6 SSP scenario - Focused on Busan Metropolitan City (CMIP6 SSP 시나리오 극한 강우량의 통계적 특성 연구 - 부산광역시를 중심으로)

  • Kim, Sunghun;Kim, Heechul;Kim, Gyobeom;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.410-410
    • /
    • 2022
  • 기후변화에 관한 정부간 협의체(Intergovernmental Panel on Climate Change, IPCC)에서는 지난해부터 제6차 평가보고서(Sixth Assessment Report, AR6)를 준비하고 있으며, 최근 Working Group II에서 수행한 기후변화 영향, 적응 및 취약성(Impacts, Adaptation and Vulnerability) 보고서를 공개하였다. 보고서는 기존의 Representative Concentration Pathway (RCP) 시나리오에 사회경제적 조건을 추가로 고려한 Shared Socioeconomic Pathway (SSP) 시나리오를 제시하였고, 세계기후연구프로그램(World Climate Research Programme, WCRP)의 Coupled Model Intercomparison Project (CMIP)에서 제공하는 6단계(Phase 6) 미래 전망 자료를 적용하였다. 본 연구에서는 기후변화로 인한 미래 극한 강우량의 통계적 특성을 파악하기 위하여 CMIP6에서 제공하는 General Circulation Models (GCMs) 기반 미래 강우자료를 수집하여 부산광역시를 중심으로 분석하였다. 4개의 SSP (SSP126, SSP245, SSP370, SSP585) 시나리오별로 10개 GCMs의 모의 결과를 사용하였다. Gumbel 분포형과 확률가중모멘트법을 이용하여 미래 극한 강우량을 산정하였고, 현재 모의기간(S0, 1983-2014) 대비 미래 전망기간(S1, 2015-2044; S2, 2041-2070; S3, 2071-2100)의 변화를 재현기간(return period, T)별로 분석하여 제시하였다.

  • PDF

Impact of Ba Substitution on the Magnetocaloric Effect in La1-xBaxMnO3 Manganites

  • Hussain, Imad;Anwar, M.S.;Kim, Eunji;Koo, Bon Heun;Lee, Chan Gyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.623-627
    • /
    • 2016
  • $La_{1-x}Ba_xMnO_3$ (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature $T_C{\sim}342K$. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near $T_C$. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/kgK under a magnetic field change of 2.5T for the $La_{0.6}Ba_{0.4}MnO_3$ composition. The relative cooling power (RCP) is 79.31 J/kg for the same applied magnetic field.

Assessing the Climate Change Impacts on Paddy Rice Evapotranspiration Considering Uncertainty (불확실성을 고려한 논벼 증발산량 기후변화 영향 평가)

  • Choi, Soon-Kun;Jeong, Jaehak;Cho, Jaepil;Hur, Seung-Oh;Choi, Dongho;Kim, Min-Kyeong
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.143-156
    • /
    • 2018
  • Evapotranspiration is a key element in designing and operating agricultural hydraulic structures. The profound effect of climate change to local agro-hydrological systems makes it inevitable to study the potential variability in evapotranspiration rate in order to develop policies on future agricultural water management as well as to evaluate changes in agricultural environment. The APEX-Paddy model was used to simulate local evapotranspiration responses to climate change scenarios. Nine Global Climate Models(GCMs) downscaled using a non-parametric quantile mapping method and a Multi?Model Ensemble method(MME) were used for an uncertainty analysis in the climate scenarios. Results indicate that APEX-Paddy and the downscaled 9 GCMs reproduce evapotranspiration accurately for historical period(1976~2005). For future periods, simulated evapotranspiration rate under the RCP 4.5 scenario showed increasing trends by -1.31%, 2.21% and 4.32% for 2025s(2011~2040), 2055s(2041~2070) and 2085s(2071~2100), respectively, compared with historical(441.6 mm). Similar trends were found under the RCP 8.5 scenario with the rates of increase by 0.00%, 4.67%, and 7.41% for the near?term, mid?term, and long?term periods. Monthly evapotranspiration was predicted to be the highest in August, July was the month having a strong upward trend while. September and October were the months showing downward trends in evapotranspiration are mainly resulted from the shortening of the growth period of paddy rice due to temperature increase and stomatal closer as ambient $CO_2$ concentration increases in the future.

Characterization of a Xanthorhodopsin-homologue from the North Pole

  • Kim, Se Hwan;Cho, Jang-Cheon;Jung, Kwang-Hwan
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.60-63
    • /
    • 2013
  • Rhodopsins belong to a family of membrane-embedded photoactive retinylidene proteins. One opsin gene was isolated from ${\beta}$-proteobacterium (IMCC9480) which had been collected at the North Pole. It is very similar to Xanthorhodopin (XR) of HTCC2181. In this study, we carried out basic characterization of the rhodopsin. It has ${\lambda}max$ of 536, 554, and 546 nm at pH 4.0, 7.0, and 10.0, respectively. Since the pKa of its proton acceptor is around 6.27, we measured its proton pumping activity and photocycling rate at pH 8.0. It has a typical proton acceptor (D99) and donor (E110) which mediate proton translocation from intracellular to extracellular region when deduced from the sequence alignments. On the basis of in vitro proton pumping activity, it was proposed to have fast photocycling rate with M and O intermediates, indicating that it is a typical ion-pumping rhodopsin. Since the XR has not yet been expressed in any other heterologous expression system, we tried to get much more information about the XR through the XR-homologue rhodopsin.

Synthesis, Characterizations, and Intramolecular Quenching Behavior of an Axially-Linked Trinuclear Molecular Wire Containing Ruthenium(II) Porphycenes

  • Abe, Masaaki;Ashigara, Shiho;Okawara, Toru;Hisaeda, Yoshio
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.22-24
    • /
    • 2015
  • A new trinuclear complex $[Ru(TPrPc)(CO)]_2[Ru(pytpy)_2](PF_6)_2$ (TPrPc = 2,7,12,17-tetra-n-propylporphycenato dianion and pytpy = 4'-(4-pyridyl)-2,2':6',2"-terpyridine) has been synthesized and characterized as the first example of a discrete molecular wire containing metalloporohycenes as a building block. The trinuclear complex shows multiple-step redox behavior in 0.1 M n-$Bu_4NPF_6$-dichloromethane. The mononuclear $[Ru(pytpy)_2]^{2+}$ precursor shows emission at 640 nm (deaerated acetone, 298 K) upon illumination at the metal-to-ligand charge transfer (MLCT) band at 495 nm, but the trinuclear molecular wire is found to be non-emissive upon photoexcitation at the central $[Ru(pytpy)_2]^{2+}$ entity, indicating an efficient quenching ability of the axially-linked, ruthenium(II)-porphycene chromophores in an intramolecular fashion.

Large Magnetic Entropy Change in La0.55Ce0.2Ca0.25MnO3 Perovskite

  • Anwar, M.S.;Kumar, Shalendra;Ahmed, Faheem;Arshi, Nishat;Kim, G.W.;Lee, C.G.;Koo, Bon-Heun
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.457-460
    • /
    • 2011
  • In this paper, magnetic property and magnetocaloric effect (MCE) in perovskite manganites of the type $La_{(0.75-X)}Ce_XCa_{0.25}MnO_3$ (x = 0.0, 0.2, 0.3 and 0.5) synthesized by using the standard solid state reaction method have been reported. From the magnetic measurements as a function of temperature and applied magnetic field, we have observed that the Curie temperature ($T_C$) of the prepared samples strongly dependent on Ce content and was found to be 255, 213 and 150 K for x = 0.0, 0.2 and 0.3, respectively. A large magnetocaloric effect in vicinity of $T_C$ has been observed with a maximum magnetic entropy change (${\mid}{\Delta}S_M{\mid}_{max}$) of 3.31 and 6.40 J/kgK at 1.5 and 4 T, respectively, for $La_{0.55}Ce_{0.2}Ca_{0.25}MnO_3$. In addition, relative cooling power (RCP) of the sample under the magnetic field variation of 1.5 T reaches 59 J/kg. These results suggest that $La_{0.55}Ce_{0.2}Ca_{0.25}MnO_3$ compound could be a suitable candidate as working substance in magnetic refrigeration at 213 K.