DOI QR코드

DOI QR Code

Synthesis, Characterizations, and Intramolecular Quenching Behavior of an Axially-Linked Trinuclear Molecular Wire Containing Ruthenium(II) Porphycenes

  • Abe, Masaaki (Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University) ;
  • Ashigara, Shiho (Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University) ;
  • Okawara, Toru (Department of Materials Chemistry and Chemical Engineering, National Institute of Technology, Kitakyushu College) ;
  • Hisaeda, Yoshio (Center for Molecular Systems (CMS), Kyushu University)
  • Received : 2015.03.14
  • Accepted : 2015.03.28
  • Published : 2015.03.01

Abstract

A new trinuclear complex $[Ru(TPrPc)(CO)]_2[Ru(pytpy)_2](PF_6)_2$ (TPrPc = 2,7,12,17-tetra-n-propylporphycenato dianion and pytpy = 4'-(4-pyridyl)-2,2':6',2"-terpyridine) has been synthesized and characterized as the first example of a discrete molecular wire containing metalloporohycenes as a building block. The trinuclear complex shows multiple-step redox behavior in 0.1 M n-$Bu_4NPF_6$-dichloromethane. The mononuclear $[Ru(pytpy)_2]^{2+}$ precursor shows emission at 640 nm (deaerated acetone, 298 K) upon illumination at the metal-to-ligand charge transfer (MLCT) band at 495 nm, but the trinuclear molecular wire is found to be non-emissive upon photoexcitation at the central $[Ru(pytpy)_2]^{2+}$ entity, indicating an efficient quenching ability of the axially-linked, ruthenium(II)-porphycene chromophores in an intramolecular fashion.

Keywords

References

  1. Vogel, E.; Kocher, M.; Schmickler, H.; Lex, J. Angew. Chem. Int. Ed. Engl. 1986, 25, 257-259. https://doi.org/10.1002/anie.198602571
  2. Vogel, E.; Balci, M.; Pramod, K.; Koch, P.; Lex, J.; Ermer, O. Angew. Chem. Int. Ed. Engl. 1987, 26, 928-931. https://doi.org/10.1002/anie.198709281
  3. D. Sanchez-GarciaJ. L. Sessler, Chem. Soc. Rev. 2008, 37, 215-238. https://doi.org/10.1039/B704945E
  4. Waluk, J. Acc. Chem. Res. 2006, 39, 945-952. https://doi.org/10.1021/ar0680365
  5. Czerski, I.; Listkowski, A.; Nawrocki, J.; Urbanska, N.; Piwonski, H.; Sokolowski, A.; Pietraszkiewicz, O.; Pietraszkiewicz, M.; Waluk, J. J. Porphyrins Phthalocyanines 2012, 16, 589-602. https://doi.org/10.1142/S1088424612500733
  6. Kumagai, T.; Hanke, F.; Gawinkowski, S.; Sharp, J.; Kotsis, K.; Waluk, J.; Persson, M.; Grill, L. Nature Chem. 2014, 6, 41-46. https://doi.org/10.1038/nchem.1804
  7. Hayashi, T.; Nakashima, Y.; Ito, K.; Ikegami, T.; Aritome, I.; Suzuki, A. Hisaeda, Y. Org. Lett. 2003, 5, 2845-2848. https://doi.org/10.1021/ol0348452
  8. Matsuo, T.; Tohi, Y.; Hayashi, T. J. Org. Chem. 2012, 77, 8946-8955. https://doi.org/10.1021/jo3013379
  9. Okawara, T.; Abe, M.; Hisaeda, Y. Tetrahedron Lett. 2014, 55, 6193-6197. https://doi.org/10.1016/j.tetlet.2014.09.057
  10. Fowler, C. J.; Sessler, J. L.; Lynch, V. M.; Waluk, J.; Gebauer, A.; Lex, J.; Heger, A.; Zuniga-y-Rivero, F.; Vogel, E. Chem. Eur. J. 2002, 8, 3485-3496. https://doi.org/10.1002/1521-3765(20020802)8:15<3485::AID-CHEM3485>3.0.CO;2-9
  11. Lo, W.-C.; Che, C.-M.; Cheng, K.-F.; Mak, T. C. W. Chem. Commun. 1997, 1205-1206.
  12. Li, Z.-Y.; Huang, S.; Che, C.-M. Inorg. Chem. 1992, 31, 2670-2672. https://doi.org/10.1021/ic00038a070
  13. Okawara, T.; Abe, M.; Shimakoshi, H.; Hisaeda, Y. Bull. Chem. Soc. Jpn. 2011, 84, 718-728. https://doi.org/10.1246/bcsj.20110072
  14. Hasegawa, J.; Takata, K.; Miyahara, T.; Neya, S.; Frisch, M. J.; Nakatsuji, H. J. Phys. Chem. A 2005, 109, 3187-3200. https://doi.org/10.1021/jp0403801
  15. Richert, C.; Wessels, J. M.; Mueller, M.; Kisters, M.; Benninghaus, T.; Goetz, A. E. J. Med. Chem. 1994, 37, 2797-2807. https://doi.org/10.1021/jm00043a019
  16. Bonnett, R. Chem. Soc. Rev. 1995, 24, 19-33. https://doi.org/10.1039/cs9952400019
  17. Stockert, J. C.; Canete, M.; Juarranz, A.; Vallanueva, A.; Horobin, R. W.; Borrell, J. I.; Teixido, J.; Nonell, S. Curr. Med. Chem. 2007, 14, 997-1036. https://doi.org/10.2174/092986707780362934
  18. Matsuo, T.; Dejima, H.; Hirota, S.; Murata, D.; Sato, H.; Ikegami, T.; Hori, H.; Hisaeda, Y.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 16007-16007. https://doi.org/10.1021/ja045880m
  19. Hayashi, T.; Okazaki, K.; Urakawa, N.; Shimakoshi, H.; Sessler, J. L.; Vogel, E.; Hisaeda, Y. Organometallics 2001, 20, 3074-3078. https://doi.org/10.1021/om010141p
  20. Costa, R. D.; Malig, J.; Brenner, W.; Jux, N.; Guldi, D. M. Adv. Mater. 2013, 25, 2600-2605. https://doi.org/10.1002/adma.201300231
  21. Brenner, W.; Malig, J.; Costa, R. D.; Guldi, D. M.; Jux, N. Adv. Mater. 2013, 25, 2314-2318. https://doi.org/10.1002/adma.201203459
  22. Nishihara, H. Chem. Lett. 2014, 43, 388-395. https://doi.org/10.1246/cl.140010
  23. Imamura, T.; Fukushima, K. Coord. Chem. Rev. 2000, 198, 133-156.
  24. Offord, D. A.; Sachs, S. B.; Ennis, M. S.; Eberspacher, T. A.; Griffin, J. H.; Chidsey, C. D. E.; Collman, J. P. J. Am. Chem. Soc. 1998, 120, 4478-4487. https://doi.org/10.1021/ja973528l
  25. de Biani, F. F.; Grigiotti, E.; Laschi, F.; Zanello, P.; Juris, A.; Prodi, L.; Chichak, K. S.; Branda, N. R. Inorg. Chem. 2008, 47, 5425-5440. https://doi.org/10.1021/ic7018428
  26. Chichak, K.; Branda, N. R. Chem. Commun. 1999, 523-524.
  27. Okawara, T.; Abe, M.; Shimakoshi, H.; Hisaeda, Y. Chem. Lett. 2008, 37, 906-907. https://doi.org/10.1246/cl.2008.906
  28. Okawara, T.; Abe, M.; Ashigara, S.; Hisaeda, Y. J. Porphyrins Phthalocianes, in press. DOI: 10.1142/S1088424614501120
  29. Constable, Cargill Thompson, E. C. A. M. W. J. Chem. Soc., Dalton Trans. 1994, 1409-1418.
  30. Constable, E. C.; Housecroft, C. E.; Cargill Thompson, A.; Passaniti, P.; Silvi, S.; Maestri, M.; Credi, A. Inorg. Chim. Acta 2007, 360, 1102-1110. https://doi.org/10.1016/j.ica.2006.08.027
  31. Wagner, R. W.; Lindsey, J. S. J. Am. Chem. Soc. 1994, 116, 9759-9760. https://doi.org/10.1021/ja00100a055
  32. Harriman, A.; Odobel, F.; Sauvage, J.-P. J. Am. Chem. Soc. 1995, 117, 9461-9472. https://doi.org/10.1021/ja00142a012