• Title/Summary/Keyword: RCP scenario

Search Result 262, Processing Time 0.025 seconds

Assessment of future climate and land use changes impact on hydrologic behavior in Anseong-cheon Gongdo urban-growing watershed (미래 기후변화와 토지이용변화가 안성천 공도 도시성장 유역의 수문에 미치는 영향 평가)

  • Kim, Da Rae;Lee, Yong Gwan;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.141-150
    • /
    • 2018
  • The purpose of this study is to evaluate the future hydrologic behavior affected by the potential climate and land use changes in upstream of Anseong-cheon watershed ($366.5km^2$) using SWAT. The HadGEM3-RA RCP 4.5 and 8.5 scenarios were used for 2030s (2020-2039) and 2050s (2040-2059) periods as the future climate change scenario. It was shown that maximum changes of precipitation ranged from -5.7% in 2030s to +18.5% in 2050s for RCP 4.5 scenarios and the temperature increased up to $1.8^{\circ}C$ and $2.6^{\circ}C$ in 2030s RCP 4.5 and 2050s 8.5 scenarios respectively based on baseline (1976-2005) period. The future land uses were predicted using the CLUE-s model by establishing logistic regression equation. The 2050 urban area were predicted to increase of 58.6% (29.0 to $46.0km^2$). The SWAT was calibrated and verified using 14 years (2002-2015) of daily streamflow with 0.86 and 0.76 Nash-Sutcliffe model efficiency (NSE) for stream flow (Q) and low flow 1/Q respectively focusing on 2 drought years (2014-2015) calibration. For future climate change only, the stream discharge showed maximum decrease of 24.2% in 2030s RCP 4.5 and turned to maximum increase of 10.9% in 2050s RCP 4.5 scenario compared with the baseline period stream discharge of 601.0 mm by the precipitation variation and gradual temperature increase. While considering both future climate and land use change, the stream discharge showed maximum decrease of 14.9% in 2030s RCP 4.5 and maximum increase of 19.5% in 2050s RCP 4.5 scenario by the urban growth and the related land use changes. The results supported that the future land use factor might be considered especially for having high potential urban growth within a watershed in the future climate change assessment.

Analysis of future flood inundation change in the Tonle Sap basin under a climate change scenario

  • Lee, Dae Eop;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.433-446
    • /
    • 2021
  • In this study, the future flood inundation changes under a climate change were simulated in the Tonle Sap basin in Cambodia, one of the countries with high vulnerability to climate change. For the flood inundation simulation using the rainfall-runoff-inundation (RRI) model, globally available geological data (digital elevation model [DEM]; hydrological data and maps based on Shuttle elevation derivatives [HydroSHED]; land cover: Global land cover facility-moderate resolution imaging spectroradiometer [GLCF-MODIS]), rainfall data (Asian precipitation-highly-resolved observational data integration towards evaluation [APHRODITE]), climate change scenario (HadGEM3-RA), and observational water level (Kratie, Koh Khel, Neak Luong st.) were constructed. The future runoff from the Kratie station, the upper boundary condition of the RRI model, was constructed to be predicted using the long short-term memory (LSTM) model. Based on the results predicted by the LSTM model, a total of 4 cases were selected (representative concentration pathway [RCP] 4.5: 2035, 2075; RCP 8.5: 2051, 2072) with the largest annual average runoff by period and scenario. The results of the analysis of the future flood inundation in the Tonle Sap basin were compared with the results of previous studies. Unlike in the past, when the change in the depth of inundation changed to a range of about 1 to 10 meters during the 1997 - 2005 period, it occurred in a range of about 5 to 9 meters during the future period. The results show that in the future RCP 4.5 and 8.5 scenarios, the variability of discharge is reduced compared to the past and that climate change could change the runoff patterns of the Tonle Sap basin.

Effect of Climate Changes on the Distribution of Productive Areas for Quercus mongolica in Korea (기후변화가 신갈나무의 적지분포에 미치는 영향)

  • Lee, Young Geun;Sung, Joo Han;Chun, Jung Hwa;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.605-612
    • /
    • 2014
  • This study was conducted to predict the changes of yearly productive area distribution for Quercus mongolica under climate change scenarios. For this, site index equations by ecoprovinces were first developed using environmental factors. Using the large data set from both a digital forest site map and a climatic map, a total of 48 environmental factors including 19 climatic variables were regressed on site index to develop site index equations. Two climate change scenarios, RCP 4.5 and RCP 8.5, were then applied to the developed site index equations and the distribution of productive areas for Quercus mongolica were predicted from 2020 to 2100 years in 10-year intervals. The results from this study show that the distribution of productive areas for Quercus mongolica generally decreases as time passes. It was also found that the productive area distribution of Quercus mongolica is different over time under two climate change scenarios. The RCP 8.5 which is more extreme climate change scenario showed much more decreased distribution of productive areas than the RCP 4.5. It is expected that the study results on the amount and distribution of productive areas over time for Quercus mongolica under climate change scenarios could provide valuable information necessary for the policies of suitable species on a site.

Prediction of SWAT Stream Flow Using Only Future Precipitation Data (미래 강수량 자료만을 이용한 SWAT모형의 유출 예측)

  • Lee, Ji Min;Kum, Donghyuk;Kim, Young Sug;Kim, Yun Jung;Kang, Hyunwoo;Jang, Chun Hwa;Lee, Gwan Jae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.88-96
    • /
    • 2013
  • Much attention has been needed in water resource management at the watershed due to drought and flooding issues caused by climate change in recent years. Increase in air temperature and changes in precipitation patterns due to climate change are affecting hydrologic cycles, such as evaporation and soil moisture. Thus, these phenomena result in increased runoff at the watershed. The Soil and Water Assessment Tool (SWAT) model has been used to evaluate rainfall-runoff at the watershed reflecting effects on hydrology of various weather data such as rainfall, temperature, humidity, solar radiation, wind speed. For bias-correction of RCP data, at least 30 year data are needed. However, for most gaging stations, only precipitation data have been recorded and very little stations have recorded other weather data. In addition, the RCP scenario does not provide all weather data for the SWAT model. In this study, two scenarios were made to evaluate whether it would be possible to estimate streamflow using measured precipitation and long-term average values of other weather data required for running the SWAT. With measured long-term weather data (scenario 1) and with long-term average values of weather data except precipitation (scenario 2), the estimate streamflow values were almost the same with NSE value of 0.99. Increase/decrease by ${\pm}2%$, ${\pm}4%$ in temperature and humidity data did not affect streamflow. Thus, the RCP precipitation data for Hongcheon watershed were bias-corrected with measured long-term precipitation data to evaluate effects of climate change on streamflow. The results revealed that estimated streamflow for 2055s was the greatest among data for 2025s, 2055s, and 2085s. However, estimated streamflow for 2085s decreased by 9%. In addition, streamflow for Spring would be expected to increase compared with current data and streamflow for Summer will be decreased with RCP data. The results obtained in this study indicate that the streamflow could be estimated with long-term precipitation data only and effects of climate change could be evaluated using precipitation data as shown in this study.

Precipitation-Streamflow Elasticity analysis of Nakdong River Based on RCP 4.5 Climate Change Scenario (RCP 4.5 기후변화 시나리오 기반의 낙동강 유역의 강우-유출 탄성도 분석)

  • Jang, Young-su;Park, Jae-Rock;Shin, Hyun-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.605-612
    • /
    • 2017
  • Climate change affects the natural ecosystem and human socioeconomic activities by acting on various constituents such as the atmospheric, oceanic, biological, and land constituents of the climate. Predicting the impacts of ongoing climate change will be an important factor in adapting to the climate of the future. In this study, precipitation-streamflow elasticity analysis of the Nakdong River area was conducted using the RCP 4.5 scenario developed by the IPCC (Intergovernmental Panel on Climate Change). Precipitation and streamflow in the Nakdong River area was analyzed using monthly, seasonal, and yearly data. Results found that the climate would become very humid climate by 2100. Results of this study can be applied to adaptation of climate change, management of water resources and efficient utilization of hydraulic structures.

Assessing the Climate Change Impacts on Agricultural Reservoirs using the SWAT model and CMIP5 GCMs (SWAT모형과 CMIP5 자료를 이용한 기후변화에 따른 농업용 저수지 기후변화 영향 평가)

  • Cho, Jaepil;Hwang, Syewoon;Go, Gwangdon;Kim, Kwang-Young;Kim, Jeongdae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.1-12
    • /
    • 2015
  • The study aimed to project inflows and demmands for the agricultural reservoir watersheds in South Korea considering a variety of regional characteristics and the uncertainty of future climate information. The study bias-corrected and spatially downscaled retrospective daily Global Climate Model (GCM) outputs under Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios using non-parametric quantile mapping method to force Soil and Water Assessment Tool (SWAT) model. Using the historical simulation, the skills of un-calibrated SWAT model (without calibration process) was evaluated for 5 reservoir watersheds (selected as well-monitored representatives). The study then, evaluated the performance of 9 GCMs in reproducing historical upstream inflow and irrigation demand at the five representative reservoirs. Finally future inflows and demands for 58 watersheds were projected using 9 GCMs projections under the two RCP scenarios. We demonstrated that (1) un-calibrated SWAT model is likely applicable to agricultural watershed, (2) the uncertainty of future climate information from different GCMs is significant, (3) multi-model ensemble (MME) shows comparatively resonable skills in reproducing water balances over the study area. The results of projection under the RCP 4.5 and RCP 8.5 scenario generally showed the increase of inflow by 9.4% and 10.8% and demand by 1.4% and 1.7%, respectively. More importantly, the results for different seasons and reservoirs varied considerably in the impacts of climate change.

A Comparison Study of Runoff Projections for Yongdam Dam Watershed Using SWAT (SWAT모형을 이용한 용담댐 유역의 유량 전망 결과 비교 연구)

  • Jung, Cha Mi;Shin, Mun-Ju;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.439-449
    • /
    • 2015
  • In this study, reliable future runoff projections based on RCPs for Yongdam dam watershed was performed using SWAT model, which was validated by k-fold cross validation method, and investigated the factors that cause the differences with respect to runoff projections between this study and previous studies. As a result, annual average runoff compared to baseline runoff would increase 17.7% and 26.1% in 2040s and 2080s respectively under RCP8.5 scenario, and 21.9% and 44.6% in 2040s and 2080s respectively under RCP4.5 scenario. Comparing the results to previous studies, minimum and maximum differences between runoff projections over different studies were 10.3% and 53.2%, even though runoff was projected by the same rainfall-runoff model. SWAT model has 27 parameters and physically based complex structure, so it tends to make different results by the model users' setting. In the future, it is necessary to reduce the cause of difference to generate standard runoff scenarios.

Analysis of Sensitivity and Vulnerability of Endangered Wild Animals to Global Warming (지구 온난화에 따른 국내 멸종위기 야생동물의 민감도 및 취약성 분석)

  • Kim, Jin-Yong;Hong, Seongbum;Shin, Man-Seok
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.235-243
    • /
    • 2018
  • Loss of favorable habitats for species due to temperature increase is one of the main concerns of climate change on the ecosystem, and endangered species might be much more sensitive to such unfavorable changes. This study aimed to analyze the impact of future climate change on endangered wild animals in South Korea by investigating thermal sensitivity and vulnerability to temperature increase. We determined thermal sensitivity by testing normality in species distribution according to temperature. Then, we defined the vulnerability when the future temperature range of South Korea completely deviate from the current temperature range of species distribution. We identified 13 species with higher thermal sensitivity. Based on IPCC future scenarios RCP 4.5 and RCP 8.5, the number of species vulnerable to future warming doubled from 3 under RCP4.5 to 7 under the RCP8.5 scenario. The species anticipated to be at risk under RCP 8.5 are flying squirrel (Pteromys volans aluco), ural owl (Pteromys volans aluco), black woodpecker (Dryocopus martius), tawny owl (Strix aluco), watercock (Gallicrex cinerea), schrenck?s bittern (Ixobrychus eurhythmus), and fairy pitta (Pitta nympha). The other 10 species showing very narrow temperature ranges even without normal distributions and out of the future temperature range may also need to be treated as vulnerable species, considering the inevitable observation scarcity of such endangered species.

Prediction of future hydrologic variables of Asia using RCP scenario and global hydrology model (RCP 시나리오 및 전지구 수문 모형을 활용한 아시아 미래 수문인자 예측)

  • Kim, Dawun;Kim, Daeun;Kang, Seok-koo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.551-563
    • /
    • 2016
  • According to the 4th and 5th assessment of the Intergovernmental Panel on Climate Change (IPCC), global climate has been rapidly changing because of the human activities since Industrial Revolution. The perceived changes were appeared strongly in temperature and concentration of carbon dioxide ($CO_2$). Global average temperature has increased about $0.74^{\circ}C$ over last 100 years (IPCC, 2007) and concentration of $CO_2$ is unprecedented in at least the last 800,000 years (IPCC, 2014). These phenomena influence precipitation, evapotranspiration and soil moisture which have an important role in hydrology, and that is the reason why there is a necessity to study climate change. In this study, Asia region was selected to simulate primary energy index from 1951 to 2100. To predict future climate change effect, Common Land Model (CLM) which is used for various fields across the world was employed. The forcing data was Representative Concentration Pathway (RCP) data which is the newest greenhouse gas emission scenario published in IPCC 5th assessment. Validation of net radiation ($R_n$), sensible heat flux (H), latent heat flux (LE) for historical period was performed with 5 flux tower site-data in the region of AsiaFlux and the monthly trends of simulation results were almost equaled to observation data. The simulation results for 2006-2100 showed almost stable net radiation, slightly decreasing sensible heat flux and quite increasing latent heat flux. Especially the uptrend for RCP 8.5 has been about doubled compared to RCP 4.5 and since late 2060s, variations of net radiation and sensible heat flux would be significantly risen becoming an extreme climate condition. In a follow-up study, a simulation for energy index and hydrological index under the detailed condition will be conducted with various scenario established from this study.

Climate Change-induced High Temperature Stress on Global Crop Production (기후변화로 인한 작물의 고온 스트레스 전망)

  • Lee, Kyoungmi;Kang, Hyun-Suk;Cho, ChunHo
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.5
    • /
    • pp.633-649
    • /
    • 2016
  • Exposure to high temperatures during the reproductive period of crops decreases their productivity. The Intergovernmental Panel on Climate Change's (IPCC) fifth Assessment Report predicts that the frequency of high temperatures will continue to increase in the future, resulting in significant impacts on the world's food supply. This study evaluate climate change-induced heat stress on four major agricultural crops (rice, maize, soybean, and wheat) at a global level, using the coupled atmosphere-ocean model of Hadley Centre Global Environmental Model version 2 (HadGEM2-AO) and FAO/IIASA Global Agro-Ecological Zone (GAEZ) model data. The maximum temperature rise ($1.8-3.5^{\circ}C$) during the thermal-sensitive period (TSP) from the baseline (1961-1990) to the future (2070-2090) is expected to be larger under a Representative Concentration Pathway (RCP) 8.5 climate scenario than under a RCP2.6 climate scenario, with substantial heat stress-related damage to productivity. In particular, heat stress is expected to cause severe damage to crop production regions located between 30 and $50^{\circ}N$ in the Northern Hemisphere. According to the RCP8.5 scenario, approximately 20% of the total cultivation area for all crops will experience unprecedented, extreme heat stress in the future. Adverse effects on the productivity of rice and soybean are expected to be particularly severe in North America. In Korea, grain demands are heavily dependent on imports, with the share of imports from the U.S. at a particularly high level today. Hence, it is necessary to conduct continuous prediction on food security level following the climate change, as well as to develop adaptation strategy and proper agricultural policy.

  • PDF