• Title/Summary/Keyword: RCAN1

Search Result 9, Processing Time 0.028 seconds

Relationship between the Regulator of Calcineurin 1-4 Isoform and In Vitro Osteoclast Differentiation (Regulator of calcineurin 1-4과 파골세포 분화의 관련성)

  • Park, Kyeong-Lok
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2015
  • Regulator of calcineurin 1 (RCAN1) is an endogenous calcineurin inhibitor that plays an important role in the pathogenesis of diseases related to the calcineurin-NFATc1 signaling pathway. The RCAN1-4 isoform is subject to NFATc1-dependent regulation. During receptor activator of nuclear factor kappa-B ligand (RANKL)-stimulated osteoclastogenesis, the calcineurin-NFATc1 pathway is critical. Because there is little information available on the role of RCAN1 in osteoclast differentiation, this study investigated whether changes in RCAN1 expression are related to the calcineurin-NFATc1 pathway and osteoclast differentiation. Mouse bone marrow monocytes (BMMs) were treated with 50 ng/ml of RANKL and M-CSF. Expression levels of NFATc1, calcineurin, and RCAN1 isoforms were determined using RT-PCR and Western blotting. Osteoclast differentiation was examined using tartrate-resistent acid phosphatase (TRAP) staining. To evaluate the effect of RCAN1 overexpression on osteoclastogenesis, cells were transfected with a mouse RCAN1-4 cDNA plasmid. After RANKL stimulation of BMMs, expression of NFATc1 and RCAN1 was increased at the mRNA and protein level, while calcineurin expression was unchanged. When the RCAN1-4 gene construct was transfected, the expression of RCAN1 protein was not increased despite several-fold increases in RCAN1-4 mRNA expression. Regardless of RANKL stimulation, over-expression of RCAN1-4 tended to reduce NFATc1 expression and knock-down of RCAN1 increase it. While BMMs transfected with the RCAN1-4 vector were differentiated into distinct osteoclasts, their phenotypes did not vary from those of mock controls. These results suggest that RCAN1 has a limited effect on the calcineurin-NFATc1 pathway during RANKL-stimulated osteoclast differentiation.

Spatiotemporal expression of RCAN1 and its isoform RCAN1-4 in the mouse hippocampus after pilocarpine-induced status epilepticus

  • Cho, Kyung-Ok;Jeong, Kyoung Hoon;Cha, Jung-Ho;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Regulator of calcineurin 1 (RCAN1) can be induced by an intracellular calcium increase and oxidative stress, which are characteristic features of temporal lobe epilepsy. Thus, we investigated the spatiotemporal expression and cellular localization of RCAN1 protein and mRNA in the mouse hippocampus after pilocarpine-induced status epilepticus (SE). Male C57BL/6 mice were given pilocarpine hydrochloride (280 mg/kg, i.p.) and allowed to develop 2 h of SE. Then the animals were given diazepam (10 mg/kg, i.p.) to stop the seizures and sacrificed at 1, 3, 7, 14, or 28 day after SE. Cresyl violet staining showed that pilocarpine-induced SE resulted in cell death in the CA1 and CA3 subfields of the hippocampus from 3 day after SE. RCAN1 immunoreactivity showed that RCAN1 was mainly expressed in neurons in the shammanipulated hippocampi. At 1 day after SE, RCAN1 expression became detected in hippocampal neuropils. However, RCAN1 signals were markedly enhanced in cells with stellate morphology at 3 and 7 day after SE, which were confirmed to be reactive astrocytes, but not microglia by double immunofluorescence. In addition, realtime reverse transcriptase-polymerase chain reaction showed a significant upregulation of RCAN1 isoform 4 (RCAN1-4) mRNA in the SE-induced hippocampi. Finally, in situ hybridization with immunohistochemistry revealed astrocytic expression of RCAN1-4 after SE. These results demonstrate astrocytic upregulation of RCAN1 and RCAN1-4 in the mouse hippocampus in the acute and subacute phases of epileptogenesis, providing foundational information for the potential role of RCAN1 in reactive astrocytes during epileptogenesis.

Allele-Specific Phenotype Suggests a Possible Stimulatory Activity of RCAN-1 on Calcineurin in Caenorhabditis elegans

  • Li, Weixun;Choi, Tae-Woo;Ahnn, Joohong;Lee, Sun-Kyung
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.827-833
    • /
    • 2016
  • Regulator of calcineurin 1 (RCAN1) binds to calcineurin through the PxIxIT motif, which is evolutionarily conserved. SP repeat phosphorylation in RCAN1 is required for its complete function. The specific interaction between RCAN1 and calcineurin is critical for calcium/calmodulin-dependent regulation of calcineurin serine/threonine phosphatase activity. In this study, we investigated two available deletion rcan-1 mutants in Caenorhabditis elegans, which proceed differently for transcription and translation. We found that rcan-1 may be required for calcineurin activity and possess calcineurin-independent function in body growth and egg-laying behavior. In the genetic background of enhanced calcineurin activity, the rcan-1 mutant expressing a truncated RCAN-1 which retains the calcineurin-binding PxIxIT motif but misses SP repeats stimulated growth, while rcan-1 lack mutant resulted in hyperactive egg-laying suppression. These data suggest rcan-1 has unknown functions independent of calcineurin, and may be a stimulatory calcineurin regulator under certain circumstances.

Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region

  • Lee, Sun-Kyung;Ahnn, Joohong
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.671-685
    • /
    • 2020
  • The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.

Overexpression of Rcan1-1L Inhibits Hypoxia-Induced Cell Apoptosis through Induction of Mitophagy

  • Sun, Lijun;Hao, Yuewen;An, Rui;Li, Haixun;Xi, Cong;Shen, Guohong
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.785-794
    • /
    • 2014
  • Mitophagy, a cellular process that selectively targets dysfunctional mitochondria for degradation, is currently a hot topic in research into the pathogenesis and treatment of many human diseases. Considering that hypoxia causes mitochondrial dysfunction, which results in cell death, we speculated that selective activation of mitophagy might promote cell survival under hypoxic conditions. In the present study, we introduced the Regulator of calcineurin 1-1L (Rcan1-1L) to initiate the mitophagy pathway and aimed to evaluate the effect of Rcan1-1L-induced mitophagy on cell survival under hypoxic conditions. Recombinant adenovirus vectors carrying Rcan1-1L were transfected into human umbilical vein endothelial cells and human adult cardiac myocytes. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and Trypan blue exclusion assay, Rcan1-1L overexpression was found to markedly reverse cell growth inhibition induced by hypoxia. Additionally, Rcan1-1L overexpression inhibited cell apoptosis under hypoxic conditions, as detected by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis assay. Meanwhile, the mitochondria-mediated cell apoptotic pathway was inhibited by Rcan1-1L. In contrast, knockdown of Rcan1-1L accelerated hypoxia-induced cell apoptosis. Moreover, Rcan1-1L overexpression significantly reduced mitochondrial mass, decreased depolarized mitochondria, and downregulated ATP and reactive oxygen species production. We further delineated that the loss of mitochondrial mass was due to the activation of mitophagy induced by Rcan1-1L. Rcan1-1L overexpression activated autophagy flux and promoted translocation of the specific mitophagy receptor Parkin into mitochondria from the cytosol, whereas inhibition of autophagy flux resulted in the accumulation of Parkin-loaded mitochondria. Finally, we demonstrated that mitochondrial 1permeability transition pore opening was significantly increased by Rcan1-1L overexpression, which suggested that Rcan1-1L might evoke mitophagy through regulating mitochondrial permeability transition pores. Taken together, we provide evidence that Rcan1-1L overexpression induces mitophagy, which in turn contributes to cell survival under hypoxic conditions, revealing for the first time that Rcan1-1L-induced mitophagy may be used for cardioprotection.

Regulator of Calcineurin 1 Isoform 4 (RCAN1.4) Is Overexpressed in the Glomeruli of Diabetic Mice

  • Jang, Cho-Rong;Lim, Ji-Hee;Park, Cheol-Whee;Cho, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.299-305
    • /
    • 2011
  • Calcineurin (CaN) is activated in diabetes and plays a role in glomerular hypertrophy and extracellular matrix (ECM) accumulation. Here, kidneys from diabetic model mice were investigated for the expression of the regulator of CaN 1 (RCAN1) isoform 4 (RCAN1.4) which had been shown to be transcriptionally upregulated by CaN activation. We found the increased immunoreactivity for RCAN1 in the glomerular cells of db/db mice and streptozotocin-induced diabetic mice. In concordance, the expression of RCAN1 protein and RCAN1.4 mRNA were elevated in the whole kidney sample from db/db mice. Interleukin-$1{\beta}$ (IL-$1{\beta}$), tumor necrosis factor-${\alpha}$, and glycated albumin (AGE-BSA) were identified as inducers of RCAN1.4 in mesangial cells. Pretreatment of cyclosporine A blocked the increases of RCAN1.4 stimulated by IL-$1{\beta}$ or AGE-BSA, suggesting that activation of CaN is required for the RCAN1.4 induction. Stable transfection of RCAN1.4 in Mes-13 mesangial cells upregulated several factors relevant to ECM production and degradation. These results suggested that RCAN1.4 might act as a link between CaN activation and ECM turnover in diabetic nephropathy.

Knockdown of RCAN1.4 Increases Susceptibility to FAS-mediated and DNA-damage-induced Apoptosis by Upregulation of p53 Expression

  • Kim, Young-Sun;Lee, Hong-Joon;Jang, Cho-Rong;Kim, Ho-Shik;Cho, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.483-489
    • /
    • 2009
  • Despite the potential importance of the human regulator of calcineurin 1 (RCAN-1) gene in the modulation of cell survival under stress, little is known about its role in death-inducing signal pathways. In this study, we addressed the effects of RCAN1.4 knockdown on cellular susceptibility to apoptosis and the activation of death pathway proteins. Transfection of siRNAs against RCAN1.4 resulted in enhanced Fas- and etoposide-induced apoptosis, which was associated with increased expression and translocation of Bax to mitochondria. Our results suggest that enhanced expression and activation of p53 was responsible for the upregulation of Bax and the increased sensitivity to apoptosis, which could be reversed by p53 knockdown. To explain the observed upregulation of p53, we propose a downregulation of the ubiquitin ligase HDM2, probably translationally. These findings show the importance of appropriate RCAN1.4 expression in the modulation of cell survival and reveal a link between RCAN1.4 and p53.

Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1

  • Park, Joong-Kyu;Oh, Yo-Han;Chung, Kwang-Chul
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.6-15
    • /
    • 2009
  • The most common genetic disorder Down syndrome (DS) displays various developmental defects including mental retardation, learning and memory deficit, the early onset of Alzheimer's disease (AD), congenital heart disease, and craniofacial abnormalities. Those characteristics result from the extra-genes located in the specific region called 'Down syndrome critical region (DSCR)' in human chromosome 21. In this review, we summarized the recent findings of the DYRK1A and RCAN1 genes, which are located on DSCR and thought to be closely associated with the typical features of DS patients, and their implication to the pathogenesis of neural defects in DS. DYRK1A phosphorylates several transcriptional factors, such as CREB and NFAT, endocytic complex proteins, and AD-linked gene products. Meanwhile, RCAN1 is an endogenous inhibitor of calcineurin A, and its unbalanced activity is thought to cause major neuronal and/or non-neuronal malfunction in DS and AD. Interestingly, they both contribute to the learning and memory deficit, altered synaptic plasticity, impaired cell cycle regulation, and AD-like neuropathology in DS. By understanding their biochemical, functional and physiological roles, we hope to get important molecular basis of DS pathology, which would consequently lead to the basis to develop the possible therapeutic tools for the neural defects in DS.

Application of Deep Learning to Solar Data: 6. Super Resolution of SDO/HMI magnetograms

  • Rahman, Sumiaya;Moon, Yong-Jae;Park, Eunsu;Jeong, Hyewon;Shin, Gyungin;Lim, Daye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2019
  • The Helioseismic and Magnetic Imager (HMI) is the instrument of Solar Dynamics Observatory (SDO) to study the magnetic field and oscillation at the solar surface. The HMI image is not enough to analyze very small magnetic features on solar surface since it has a spatial resolution of one arcsec. Super resolution is a technique that enhances the resolution of a low resolution image. In this study, we use a method for enhancing the solar image resolution using a Deep-learning model which generates a high resolution HMI image from a low resolution HMI image (4 by 4 binning). Deep learning networks try to find the hidden equation between low resolution image and high resolution image from given input and the corresponding output image. In this study, we trained a model based on a very deep residual channel attention networks (RCAN) with HMI images in 2014 and test it with HMI images in 2015. We find that the model achieves high quality results in view of both visual and measures: 31.40 peak signal-to-noise ratio(PSNR), Correlation Coefficient (0.96), Root mean square error (RMSE) is 0.004. This result is much better than the conventional bi-cubic interpolation. We will apply this model to full-resolution SDO/HMI and GST magnetograms.

  • PDF