Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0060

Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region  

Lee, Sun-Kyung (Department of Life Science, College of Natural Sciences, Hanyang University)
Ahnn, Joohong (Department of Life Science, College of Natural Sciences, Hanyang University)
Abstract
The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.
Keywords
calcineurin; Down syndrome; RCAN1; RCAN2; RCAN3;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lopez-Vilella, R., Sanchez-Lazaro, I.J., Martinez-Dolz, L., Almenar-Bonet, L., Marques-Sule, E., Melero-Ferrer, J., Portoles-Sanz, M., Rivera-Otero, M., Domingo-Valero, D., and Montero-Argudo, A. (2015). Incidence of development of obesity after heart transplantation according to the calcineurin inhibitor. Transplant. Proc. 47, 127-129.   DOI
2 Facchin, F., Vitale, L., Bianconi, E., Piva, F., Frabetti, F., Strippoli, P., Casadei, R., Pelleri, M.C., Piovesan, A., and Canaider, S. (2011). Complexity of bidirectional transcription and alternative splicing at human RCAN3 locus. PLoS One 6, e24508.   DOI
3 FitzPatrick, D.R., Ramsay, J., McGill, N.I., Shade, M., Carothers, A.D., and Hastie, N.D. (2002). Transcriptome analysis of human autosomal trisomy. Hum. Mol. Genet. 11, 3249-3256.   DOI
4 Fox, D.S. and Heitman, J. (2005). Calcineurin-binding protein Cbp1 directs the specificity of calcineurin-dependent hyphal elongation during mating in Cryptococcus neoformans. Eukaryot. Cell 4, 1526-1538.   DOI
5 Fuentes, J.J., Genesca, L., Kingsbury, T.J., Cunningham, K.W., Perez-Riba, M., Estivill, X., and de la Luna, S. (2000). DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum. Mol. Genet. 9, 1681-1690.   DOI
6 Fuentes, J.J., Pritchard, M.A., and Estivill, X. (1997). Genomic organization, alternative splicing, and expression patterns of the DSCR1 (Down syndrome candidate region 1) gene. Genomics 44, 358-361.   DOI
7 Fuentes, J.J., Pritchard, M.A., Planas, A.M., Bosch, A., Ferrer, I., and Estivill, X. (1995). A new human gene from the Down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Hum. Mol. Genet. 4, 1935-1944.   DOI
8 Genesca, L., Aubareda, A., Fuentes, J.J., Estivill, X., De La Luna, S., and Perez-Riba, M. (2003). Phosphorylation of calcipressin 1 increases its ability to inhibit calcineurin and decreases calcipressin half-life. Biochem. J. 374, 567-575.   DOI
9 Gorlach, J., Fox, D.S., Cutler, N.S., Cox, G.M., Perfect, J.R., and Heitman, J. (2000). Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans. EMBO J. 19, 3618-3629.   DOI
10 Grabner, A., Amaral, A.P., Schramm, K., Singh, S., Sloan, A., Yanucil, C., Li, J., Shehadeh, L.A., Hare, J.M., David, V., et al. (2015). Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 22, 1020-1032.   DOI
11 Grossman, T.R., Gamliel, A., Wessells, R.J., Taghli-Lamallem, O., Jepsen, K., Ocorr, K., Korenberg, J.R., Peterson, K.L., Rosenfeld, M.G., Bodmer, R., et al. (2011). Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet. 7, e1002344.   DOI
12 Han, K., Chen, H., Gennarino, V.A., Richman, R., Lu, H.C., and Zoghbi, H.Y. (2015). Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice. Hum. Mol. Genet. 24, 1813-1823.   DOI
13 Han, K.A., Kang, H.S., Lee, J.W., Yoo, L., Im, E., Hong, A., Lee, Y.J., Shin, W.H., and Chung, K.C. (2014). Histone deacetylase 3 promotes RCAN1 stability and nuclear translocation. PLoS One 9, e105416.   DOI
14 Harris, C.D., Ermak, G., and Davies, K.J.A. (2005). Multiple roles of the DSCR1 (Adapt78 or RCAN1) gene and its protein product Calcipressin 1 (or RCAN1) in disease. Cell. Mol. Life Sci. 62, 2477-2486.   DOI
15 Hoeffer, C.A., Dey, A., Sachan, N., Wong, H., Patterson, R.J., Shelton, J.M., Richardson, J.A., Klann, E., and Rothermel, B.A. (2007). The Down syndrome critical region protein RCAN1 regulates long-term potentiation and memory via inhibition of phosphatase signaling. J. Neurosci. 27, 13161-13172.   DOI
16 Hattori, Y., Sentani, K., Shinmei, S., Oo, H.Z., Hattori, T., Imai, T., Sekino, Y., Sakamoto, N., Oue, N., Niitsu, H., et al. (2019). Clinicopathological significance of RCAN2 production in gastric carcinoma. Histopathology 74, 430-442.   DOI
17 Heisel, O., Heisel, R., Balshaw, R., and Keown, P. (2004). New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am. J. Transplant. 4, 583-595.   DOI
18 Heit, J.J. (2007). Calcineurin/NFAT signaling in the ${\beta}$-cell: from diabetes to new therapeutics. BioEssays 29, 1011-1021.   DOI
19 Helguera, P., Seiglie, J., Rodriguez, J., Hanna, M., Helguera, G., and Busciglio, J. (2013). Adaptive downregulation of mitochondrial function in down syndrome. Cell Metab. 17, 132-140.   DOI
20 Hirakawa, Y., Nary, L.J., and Medh, R.D. (2009). Glucocorticoid evoked upregulation of RCAN1-1 in human leukemic CEM cells susceptible to apoptosis. J. Mol. Signal. 4, 6.   DOI
21 Horner, V.L., Czank, A., Jang, J.K., Singh, N., Williams, B.C., Puro, J., Kubli, E., Hanes, S.D., McKim, K.S., Wolfner, M.F., et al. (2006). The Drosophila calcipressin sarah is required for several aspects of egg activation. Curr. Biol. 16, 1441-1446.   DOI
22 Johnson, M.B., De Franco, E., Greeley, S., Letourneau, L.R., Gillespie, K.M., International DS-PNDM Consortium, Wakeling, M.N., Ellard, S., Flanagan, S.E., Patel, K.A., et al. (2019). Trisomy 21 is a cause of permanent neonatal diabetes that is autoimmune but not HLA associated. Diabetes 68, 1528-1535.   DOI
23 Hu, J., Bae, Y.K., Knobel, K.M., and Barr, M.M. (2006). Casein kinase II and calcineurin modulate TRPP function and ciliary localization. Mol. Biol. Cell 17, 2200-2211.   DOI
24 Jeong, S. (2017). Molecular and cellular basis of neurodegeneration in Alzheimer's disease. Mol. Cells 40, 613-620.   DOI
25 Jiang, H., Zhang, C., Tang, Y., Zhao, J., Wang, T., Liu, H., and Sun, X. (2017). The regulator of calcineurin 1 increases adenine nucleotide translocator 1 and leads to mitochondrial dysfunctions. J. Neurochem. 140, 307-319.   DOI
26 Kurabayashi, N. and Sanada, K. (2013). Increased dosage of DYRK1A and DSCR1 delays neuronal differentiation in neocortical progenitor cells. Genes Dev. 27, 2708-2721.   DOI
27 Kim, S.S., Oh, Y., Chung, K.C., and Seo, S.R. (2012). Protein kinase A phosphorylates Down syndrome critical region 1 (RCAN1). Biochem. Biophys. Res. Commun. 418, 657-661.   DOI
28 Kingsbury, T.J. and Cunningham, K.W. (2000). A conserved family of calcineurin regulators. Genes Dev. 14, 1595-1604.
29 Korenberg, J.R., Kawashima, H., Pulst, S.M., Ikeuchi, T., Ogasawara, N., Yamamoto, K., Schonberg, S.A., West, R., Allen, L., Magenis, E., et al. (1990). Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am. J. Hum. Genet. 47, 236-246.
30 Lane, A.A., Chapuy, B., Lin, C.Y., Tivey, T., Li, H., Townsend, E.C., van Bodegom, D., Day, T.A., Wu, S.C., Liu, H., et al. (2014). Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat. Genet. 46, 618-623.   DOI
31 Leahy, K.P. and Crawford, D.R. (2000). adapt78 protects cells against stress damage and suppresses cell growth. Arch. Biochem. Biophys. 379, 221-228.   DOI
32 Lee, E.J., Lee, J.Y., Seo, S.R., and Chung, K.C. (2007). Overexpression of DSCR1 blocks zinc-induced neuronal cell death through the formation of nuclear aggregates. Mol. Cell. Neurosci. 35, 585-595.   DOI
33 Lee, J.I., Dhakal, B.K., Lee, J., Bandyopadhyay, J., Jeong, S.Y., Eom, S.H., Kim, D.H., and Ahnn, J. (2003). The Caenorhabditis elegans homologue of Down syndrome critical region 1, RCN-1, inhibits multiple functions of the phosphatase calcineurin. J. Mol. Biol. 328, 147-156.   DOI
34 Li, W., Choi, T.W., Ahnn, J., and Lee, S.K. (2016). Allele-specific phenotype suggests a possible stimulatory activity of RCAN-1 on calcineurin in Caenorhabditis elegans. Mol. Cells 39, 827-833.   DOI
35 Lee, Y., Kang, H., Jin, C., Zhang, Y., Kim, Y., and Han, K. (2019). Transcriptome analyses suggest minimal effects of Shank3 dosage on directional gene expression changes in the mouse striatum. Anim. Cells Syst. (Seoul) 23, 270-274.   DOI
36 Leifheit-Nestler, M., Richter, B., Basaran, M., Nespor, J., Vogt, I., Alesutan, I., Voelkl, J., Lang, F., Heineke, J., Krick, S., et al. (2018). Impact of altered mineral metabolism on pathological cardiac remodeling in elevated fibroblast growth factor 23. Front. Endocrinol. (Lausanne) 9, 333.   DOI
37 Letourneau, A., Santoni, F.A., Bonilla, X., Sailani, M.R., Gonzalez, D., Kind, J., Chevalier, C., Thurman, R., Sandstrom, R.S., Hibaoui, Y., et al. (2014). Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature 508, 345-350.   DOI
38 Li, H., Zhang, W., Zhong, F., Das, G.C., Xie, Y., Li, Z., Cai, W., Jiang, G., Choi, J., Sidani, M., et al. (2018). Epigenetic regulation of RCAN1 expression in kidney disease and its role in podocyte injury. Kidney Int. 94, 1160-1176.   DOI
39 Li, W., Bell, H.W., Ahnn, J., and Lee, S.K. (2015). Regulator of calcineurin (RCAN-1) regulates thermotaxis behavior in caenorhabditis elegans. J. Mol. Biol. 427, 3457-3468.   DOI
40 Liu, E.S., Thoonen, R., Petit, E., Yu, B., Buys, E.S., Scherrer-Crosbie, M., and Demay, M.B. (2018). Increased circulating FGF23 does not lead to cardiac hypertrophy in the male Hyp mouse model of XLH. Endocrinology 159, 2165-2172.   DOI
41 Liu, X., Zhao, D., Qin, L., Li, J., and Zeng, H. (2008). Transcription enhancer factor 3 (TEF3) mediates the expression of Down syndrome candidate region 1 isoform 1 (DSCR1-1L) in endothelial cells. J. Biol. Chem. 283, 34159-34167.   DOI
42 Park, J.S., Jeong, J.H., Byun, J.K., Lim, M.A., Kim, E.K., Kim, S.M., Choi, S.Y., Park, S.H., Min, J.K., and Cho, M.L. (2017). Regulator of calcineurin 3 ameliorates autoimmune arthritis by suppressing Th17 cell differentiation. Am. J. Pathol. 187, 2034-2045.   DOI
43 Oh, M., Dey, A., Gerard, R.D., Hill, J.A., and Rothermel, B.A. (2010). The CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$ cooperates with NFAT to control expression of the calcineurin regulatory protein RCAN1-4. J. Biol. Chem. 285, 16623-16631.   DOI
44 Ohno, S. (1970). Evolution by Gene Duplication (Berlin, Germany: Springer-Verlag).
45 Papadimitriou, I.D., Eynon, N., Yan, X., Munson, F., Jacques, M., Kuang, J., Voisin, S., North, K.N., and Bishop, D.J. (2019). A "human knockout" model to investigate the influence of the ${\alpha}$-actinin-3 protein on exercise-induced mitochondrial adaptations. Sci. Rep. 9, 12688.   DOI
46 Parra, V., Altamirano, F., Hernandez-Fuentes, C.P., Tong, D., Kyrychenko, V., Rotter, D., Pedrozo, Z., Hill, J.A., Eisner, V., Lavandero, S., et al. (2018). Down syndrome critical region 1 gene, Rcan1, helps maintain a more fused mitochondrial network. Circ. Res. 122, e20-e33.   DOI
47 Patel, A., Yamashita, N., Ascano, M., Bodmer, D., Boehm, E., Bodkin-Clarke, C., Ryu, Y.K., and Kuruvilla, R. (2015). RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat. Commun. 6, 10119.   DOI
48 Bassett, J.H.D., Logan, J.G., Boyde, A., Cheung, M.S., Evans, H., Croucher, P., Sun, X., Xu, S., Murata, Y., and Williams, G.R. (2012). Mice lacking the calcineurin inhibitor Rcan2 have an isolated defect of osteoblast function. Endocrinology 153, 3537-3548.   DOI
49 Antonarakis, S.E. (2017). Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet. 18, 147-163.   DOI
50 Antonarakis, S.E., Lyle, R., Dermitzakis, E.T., Reymond, A., and Deutsch, S. (2004). Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat. Rev. Genet. 5, 725-738.   DOI
51 Shaw, J.L., Zhang, S., and Chang, K.T. (2015). Bidirectional regulation of amyloid precursor protein-induced memory defects by Nebula/DSCR1:a protein upregulated in Alzheimer's disease and Down syndrome. J. Neurosci. 35, 11374-11383.   DOI
52 Shin, S.Y., Choo, S.M., Kim, D., Baek, S.J., Wolkenhauer, O., and Cho, K.H. (2006). Switching feedback mechanisms realize the dual role of MCIP in the regulation of calcineurin activity. FEBS Lett. 580, 5965-5973.   DOI
53 Strippoli, P., Lenzi, L., Petrini, M., Carinci, P., and Zannotti, M. (2000). A new gene family including DSCR1 (Down Syndrome Candidate Region 1) and ZAKI-4: characterization from yeast to human and identification of DSCR1-like 2, a novel human member (DSCR1L2). Genomics 64, 252-263.   DOI
54 Peiris, H., Duffield, M.D., Fadista, J., Jessup, C.F., Kashmir, V., Genders, A.J., McGee, S.L., Martin, A.M., Saiedi, M., Morton, N., et al. (2016). A syntenic cross species aneuploidy genetic screen links RCAN1 expression to ${\beta}$-cell mitochondrial dysfunction in type 2 diabetes. PLoS Genet. 12, e1006033.   DOI
55 Siddiq, A., Miyazaki, T., Takagishi, Y., Kanou, Y., Hayasaka, S., Inouye, M., Seo, H., and Murata, Y. (2001). Expression of ZAKI-4 messenger ribonucleic acid in the brain during rat development and the effect of hypothyroidism. Endocrinology 142, 1752-1759.   DOI
56 Sobrado, M., Ramirez, B.G., Neria, F., Lizasoain, I., Arbones, M.L., Minami, T., Redondo, J.M., Moro, M.A., and Cano, E. (2012). Regulator of calcineurin 1 (Rcan1) has a protective role in brain ischemia/reperfusion injury. J. Neuroinflammation 9, 48.
57 Stevenson, N.L., Bergen, D.J.M., Xu, A., Wyatt, E., Henry, F., McCaughey, J., Vuolo, L., Hammond, C.L., and Stephens, D.J. (2018). Regulator of calcineurin-2 is a centriolar protein with a role in cilia length control. J. Cell Sci. 131, jcs212258.   DOI
58 Strippoli, P., D'Addabbo, P., Lenzi, L., Giannone, S., Canaider, S., Casadei, R., Vitale, L., Carinci, P., and Zannotti, M. (2002). Segmental paralogy in the human genome: a large-scale triplication on 1p, 6p, and 21q. Mamm. Genome 13, 456-462.   DOI
59 Peiris, H. and Keating, D.J. (2018). The neuronal and endocrine roles of RCAN1 in health and disease. Clin. Exp. Pharmacol. Physiol. 45, 377-383.   DOI
60 Bouret, S., Levin, B.E., and Ozanne, S.E. (2015). Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol. Rev. 95, 47-82.   DOI
61 Peiris, H., Raghupathi, R., Jessup, C.F., Zanin, M.P., Mohanasundaram, D., Mackenzie, K.D., Chataway, T., Clarke, J.N., Brealey, J., Coates, P.T., et al. (2012). Increased expression of the glucose-responsive gene, RCAN1, causes hypoinsulinemia, ${\beta}$-cell dysfunction, and diabetes. Endocrinology 153, 5212-5221.   DOI
62 Pfister, S.C., Machado-Santelli, G.M., Han, S.W., and Henrique-Silva, F. (2002). Mutational analyses of the signals involved in the subcellular location of DSCR1. BMC Cell Biol. 3, 24.   DOI
63 Pisani, D.F., Barquissau, V., Chambard, J.C., Beuzelin, D., Ghandour, R.A., Giroud, M., Mairal, A., Pagnotta, S., Cinti, S., Langin, D., et al. (2018). Mitochondrial fission is associated with UCP1 activity in human brite/ beige adipocytes. Mol. Metab. 7, 35-44.   DOI
64 Rahmani, Z., Blouin, J.L., Creau-Goldberg, N., Watkins, P.C., Mattei, J.F., Poissonnier, M., Prieur, M., Chettouh, Z., Nicole, A., and Aurias, A. (1990). Down syndrome critical region around D21S55 on proximal 21q22.3. Am. J. Med. Genet. Suppl. 7, 98-103.
65 Canaider, S., Facchin, F., Griffoni, C., Casadei, R., Vitale, L., Lenzi, L., Frabetti, F., D'Addabbo, P., Carinci, P., Zannotti, M., et al. (2006). Proteins encoded by human Down syndrome critical region gene 1-like 2 (DSCR1L2) mRNA and by a novel DSCR1L2 mRNA isoform interact with cardiac troponin I (TNNI3). Gene 372, 128-136.   DOI
66 Bray, M.S., Shaw, C.A., Moore, M.W.S., Garcia, R.A.P., Zanquetta, M.M., Durgan, D.J., Jeong, W.J., Tsai, J.Y., Bugger, H., Zhang, D., et al. (2008). Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am. J. Physiol. Heart. Circ. Physiol. 294, H1036-H1047.   DOI
67 Bray, M.S. and Young, M.E. (2008). Diurnal variations in myocardial metabolism. Cardiovasc. Res. 79, 228-237.   DOI
68 Burkewitz, K., Morantte, I., Weir, H.J.M., Yeo, R., Zhang, Y., Huynh, F.K., Ilkayeva, O.R., Hirschey, M.D., Grant, A.R., and Mair, W.B. (2015). Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell 160, 842-855.   DOI
69 Canaider, S., Vettraino, M., Norling, L.V., Spisni, E., Facchin, F., Cooper, D., and Perretti, M. (2010). Human RCAN3 gene expression and cell growth in endothelial cells. Int. J. Mol. Med. 26, 913-918.
70 Cao, X., Kambe, F., Miyazaki, T., Sarkar, D., Ohmori, S., and Seo, H. (2002). Novel human ZAKI-4 isoforms: hormonal and tissue-specific regulation and function as calcineurin inhibitors. Biochem. J. 367, 459-466.   DOI
71 Chang, K.T. and Min, K.T. (2005). Drosophila melanogaster homolog of Down syndrome critical region 1 is critical for mitochondrial function. Nat. Neurosci. 8, 1577-1585.   DOI
72 Takeo, S., Tsuda, M., Akahori, S., Matsuo, T., and Aigaki, T. (2006). The calcineurin regulator sra plays an essential role in female meiosis in Drosophila. Curr. Biol. 16, 1435-1440.   DOI
73 Rakowski-Anderson, T., Wong, H., Rothermel, B., Cain, P., Lavilla, C., Pullium, J.K., and Hoeffer, C. (2012). Fecal corticosterone levels in RCAN1 mutant mice. Comp. Med. 62, 87-94.
74 Ramos, E.M., Hoffman, D., Junkins, H.A., Maglott, D., Phan, L., Sherry, S.T., Feolo, M., and Hindorff, L.A. (2014). Phenotype-genotype integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources. Eur. J. Hum. Genet. 22, 144-147.   DOI
75 Sun, L., Hao, Y., An, R., Li, H., Xi, C., and Shen, G. (2014). Overexpression of Rcan1-1L inhibits hypoxia-induced cell apoptosis through induction of mitophagy. Mol. Cells 37, 785-794.   DOI
76 Sun, X., Hayashi, Y., Xu, S., Kanou, Y., Takagishi, Y., Tang, Y., and Murata, Y. (2011b). Inactivation of the Rcan2 gene in mice ameliorates the age- and diet-induced obesity by causing a reduction in food intake. PLoS One 6, e14605.   DOI
77 Sun, X., Wu, Y., Chen, B., Zhang, Z., Zhou, W., Tong, Y., Yuan, J., Xia, K., Gronemeyer, H., Flavell, R.A., et al. (2011a). Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J. Biol. Chem. 286, 9049-9062.   DOI
78 Tsai, J.Y. and Young, M.E. (2009). Diurnal variations in myocardial metabolism. Heart Metab. 44, 5-9.
79 U, M., Shen, L., Oshida, T., Miyauchi, J., Yamada, M., and Miyashita, T. (2004). Identification of novel direct transcriptional targets of glucocorticoid receptor. Leukemia 18, 1850-1856.   DOI
80 Valenti, D., Manente, G.A., Moro, L., Marra, E., Vacca, R.A., and Anna, R. (2011). Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of cAMP/PKA signaling pathway. Biochem. J. 435, 679-688.   DOI
81 Vega, R.B., Rothermel, B.A., Weinheimer, C.J., Kovacs, A., Naseem, R.H., Bassel-Duby, R., Williams, R.S., and Olson, E.N. (2003). Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 100, 669-674.   DOI
82 MacArthur, D.G., Seto, J.T., Raftery, J.M., Quinlan, K.G., Huttley, G.A., Hook, J.W., Lemckert, F.A., Kee, A.J., Edwards, M.R., Berman, Y., et al. (2007). Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat. Genet. 39, 1261-1265.   DOI
83 Lupien, S.J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N.P.V., Thakur, M., McEwen, B.S., Hauger, R.L., and Meaney, M.J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat. Neurosci. 1, 69-73.   DOI
84 Lyle, R., Bena, F., Gagos, S., Gehrig, C., Lopez, G., Schinzel, A., Lespinasse, J., Bottani, A., Dahoun, S., Taine, L., et al. (2009). Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur. J. Hum. Genet. 17, 454-466.   DOI
85 Macarthur, D.G., Seto, J.T., Chan, S., Quinlan, K.G.R., Raftery, J.M., Turner, N., Nicholson, M.D., Kee, A.J., Hardeman, E.C., Gunning, P.W., et al. (2008). An Actn3 knockout mouse provides mechanistic insights into the association between ${\alpha}$-actinin-3 deficiency and human athletic performance. Hum. Mol. Genet. 17, 1076-1086.   DOI
86 Mair, W., Morantte, I., Rodrigues, A.P.C., Manning, G., Montminy, M., Shaw, R.J., and Dillin, A. (2011). Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470, 404-408.   DOI
87 Manfredini, R., Fabbian, F., Manfredini, F., Salmi, R., Gallerani, M., and Bossone, E. (2013). Chronobiology in aortic diseases - "is this really a random phenomenon?" Prog. Cardiovasc. Dis. 56, 116-124.   DOI
88 Rothermel, B.A., McKinsey, T.A., Vega, R.B., Nicol, R.L., Mammen, P., Yang, J., Antos, C.L., Shelton, J.M., Bassel-Duby, R., Olson, E.N., et al. (2001). Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. U. S. A. 98, 3328-3333.   DOI
89 Ribas, V., Drew, B.G., Zhou, Z., Phun, J., Kalajian, N.Y., Soleymani, T., Daraei, P., Widjaja, K., Wanagat, J., Vallim, T.Q.D.A., et al. (2016). Skeletal muscle action of estrogen receptor ${\alpha}$ is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci. Transl. Med. 8, 334ra54.   DOI
90 Rothermel, B., Vega, R.B., Yang, J., Wu, H., Bassel-Duby, R., and Williams, R.S. (2000). A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J. Biol. Chem. 275, 8719-8725.   DOI
91 Crawford, D.R., Leahy, K.P., Abramova, N., Lan, L., Wang, Y., and Davies, K.J.A. (1997). Hamster adapt78 mRNA is a Down syndrome critical region homologue that is inducible by oxidative stress. Arch. Biochem. Biophys. 342, 6-12.   DOI
92 Chang, K.T., Shi, Y.J., and Min, K.T. (2003). The Drosophila homolog of Down's syndrome critical region 1 gene regulates learning: implications for mental retardation. Proc. Natl. Acad. Sci. U. S. A. 100, 15794-15799.   DOI
93 Chen, X., Hu, Y., Wang, S., and Sun, X. (2017). The regulator of calcineurin 1 (RCAN1) inhibits nuclear factor kappaB signaling pathway and suppresses human malignant glioma cells growth. Oncotarget 8, 12003-12012.   DOI
94 Choi, C., Kim, T., Chang, K.T., and Min, K. (2019). DSCR 1-mediated TET 1 splicing regulates miR-124 expression to control adult hippocampal neurogenesis. EMBO J. 38, e101293.
95 Cunningham, K.W. and Fink, G.R. (1994). Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J. Cell Biol. 124, 351-363.   DOI
96 Cunningham, K.W. and Fink, G.R. (1996). Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2226-2237.   DOI
97 Dahoun, S., Gagos, S., Gagnebin, M., Gehrig, C., Burgi, C., Simon, F., Vieux, C., Extermann, P., Lyle, R., Morris, M.A., et al. (2008). Monozygotic twins discordant for trisomy 21 and maternal 21q inheritance: a complex series of events. Am. J. Med. Genet. A 146A, 2086-2093.   DOI
98 Martinez-Hoyer, S., Sole-Sanchez, S., Aguado, F., Martinez-Martinez, S., Serrano-Candelas, E., Hernandez, J.L., Iglesias, M., Redondo, J.M., Casanovas, O., Messeguer, R., et al. (2015). A novel role for an RCAN3-derived peptide as a tumor suppressor in breast cancer. Carcinogenesis 36, 792-799.   DOI
99 Martin, K.R., Corlett, A., Dubach, D., Mustafa, T., Coleman, H.A., Parkington, H.C., Merson, T.D., Bourne, J.A., Porta, S., Arbones, M.L., et al. (2012). Overexpression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory. Hum. Mol. Genet. 21, 3025-3041.   DOI
100 Martinez-Hoyer, S., Aranguren-Ibanez, A., Garcia-Garcia, J., Serrano-Candelas, E., Vilardell, J., Nunes, V., Aguado, F., Oliva, B., Itarte, E., and Perez-Riba, M. (2013). Protein kinase CK2-dependent phosphorylation of the human Regulators of Calcineurin reveals a novel mechanism regulating the calcineurin-NFATc signaling pathway. Biochim. Biophys. Acta 1833, 2311-2321.   DOI
101 Martino, T.A. and Sole, M.J. (2009). Molecular time: an often overlooked dimension to cardiovascular disease. Circ. Res. 105, 1047-1061.   DOI
102 McCormick, M.K., Schinzel, A., Petersen, M.B., Stetten, G., Driscoll, D.J., Cantu, E.S., Tranebjaerg, L., Mikkelsen, M., Watkins, P.C., and Antonarakis, S.E. (1989). Molecular genetic approach to the characterization of the “Down syndrome region” of chromosome 21. Genomics 5, 325-331.   DOI
103 Megarbane, A., Ravel, A., Mircher, C., Sturtz, F., Grattau, Y., Rethore, M.O., Delabar, J.M., and Mobley, W.C. (2009). The 50th anniversary of the discovery of trisomy 21: the past, present, and future of research and treatment of Down syndrome. Genet. Med. 11, 611-616.   DOI
104 Mehta, S., Li, H., Hogan, P.G., and Cunningham, K.W. (2009). Domain architecture of the regulators of calcineurin (RCANs) and identification of a divergent RCAN in yeast. Mol. Cell. Biol. 29, 2777-2793.   DOI
105 Roy, J. and Cyert, M.S. (2019). Identifying new substrates and functions for an old enzyme: calcineurin. Cold Spring Harb. Perspect. Biol. 12, a035436.   DOI
106 Rothermel, B.A., Vega, R.B., and Williams, R.S. (2003). The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends Cardiovasc. Med. 13, 15-21.   DOI
107 Rotter, D., Grinsfelder, D.B., Parra, V., Pedrozo, Z., Singh, S., Sachan, N., and Rothermel, B.A. (2014). Calcineurin and its regulator, RCAN1, confer timeof-day changes in susceptibility of the heart to ischemia/reperfusion. J. Mol. Cell. Cardiol. 74, 103-111.   DOI
108 Rotter, D., Peiris, H., Grinsfelder, D.B., Martin, A.M., Burchfield, J., Parra, V., Hull, C., Morales, C.R., Jessup, C.F., Matusica, D., et al. (2018). Regulator of Calcineurin 1 helps coordinate whole-body metabolism and thermogenesis. EMBO Rep. 19, e44706.
109 Wang, W., Zhu, J.Z., Chang, K.T., and Min, K.T. (2012). DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis. EMBO J. 31, 3655-3666.   DOI
110 Davies, K.J.A., Ermak, G., Rothermel, B.A., Pritchard, M., Heitman, J., Ahnn, J., Henrique-Silva, F., Crawford, D., Canaider, S., Strippoli, P., et al. (2007). Renaming the DSCR1 /Adapt78 gene family as RCAN: regulators of calcineurin. FASEB J. 21, 3023-3028.   DOI
111 Wu, H., Kao, S., Barrientos, T., Baldwin, S.H., Olson, E.N., Crabtree, G.R., Zhou, B., and Chang, C.P. (2007). Down syndrome critical region-1 is a transcriptional target of nuclear factor of activated T cells-c1 within the endocardium during heart development. J. Biol. Chem. 282, 30673-30679.   DOI
112 Wu, Y. and Song, W. (2013). Regulation of RCAN1 translation and its role in oxidative stress-induced apoptosis. FASEB J. 27, 208-221.   DOI
113 Yang, J., Rothermel, B., Vega, R.B., Frey, N., McKinsey, T.A., Olson, E.N., Bassel-Duby, R., and Williams, R.S. (2000). Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ. Res. 87, E61-E68.
114 Yun, Y., Zhang, Y., Zhang, C., Huang, L., Tan, S., Wang, P., Vilarino-Guell, C., Song, W., and Sun, X. (2019). Regulator of calcineurin 1 is a novel RNAbinding protein to regulate neuronal apoptosis. Mol. Psychiatry 2019 Aug 27 [Epub]. https://doi.org/10.1038/s41380-019-0487-0
115 Zhang, Y., Kang, H.R., and Han, K. (2019). Differential cell-type-expression of CYFIP1 and CYFIP2 in the adult mouse hippocampus. Anim. Cells Syst. (Seoul) 23, 380-383.   DOI
116 Miyazaki, T., Kanou, Y., Murata, Y., Ohmori, S., Niwa, T., Maeda, K., Yamamura, H., and Seo, H. (1996). Molecular cloning of a novel thyroid hormone-responsive gene, ZAKI-4, in human skin fibroblasts. J. Biol. Chem. 271, 14567-14571.   DOI
117 Zhao, Y., Long, L., Wan, J., Biliya, S., Brady, S.C., Lee, D., Ojemakinde, A., Andersen, E.C., Vannberg, F.O., Lu, H., et al. (2020). A spontaneous complex structural variant in rcan-1 increases exploratory behavior and laboratory fitness of Caenorhabditis elegans. PLoS Genet. 16, e1008606.   DOI
118 Zheng, L., Liu, H., Wang, P., Song, W., and Sun, X. (2014). Regulator of calcineurin 1 gene transcription is regulated by nuclear factor-kappaB. Curr. Alzheimer Res. 11, 156-164.   DOI
119 Meijsen, J.J., Rammos, A., Campbell, A., Hayward, C., Porteous, D.J., Deary, I.J., Marioni, R.E., and Nicodemus, K.K. (2019). Using tree-based methods for detection of gene-gene interactions in the presence of a polygenic signal: simulation study with application to educational attainment in the Generation Scotland Cohort Study. Bioinformatics 35, 181-188.   DOI
120 Min, C.K., Yeom, D.R., Lee, K.E., Kwon, H.K., Kang, M., Kim, Y.S., Park, Z.Y., Jeon, H., and Kim, D.H. (2012). Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for Ca2+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart. Biochem. J. 447, 371-379.   DOI
121 Moley, K.H. and Colditz, G.A. (2016). Effects of obesity on hormonally driven cancer in women. Sci. Transl. Med. 8, 323ps3.   DOI
122 Mulero, M.C., Aubareda, A., Schluter, A., and Perez-Riba, M. (2007). RCAN3, a novel calcineurin inhibitor that down-regulates NFAT-dependent cytokine gene expression. Biochim. Biophys. Acta 1773, 330-341.   DOI
123 Niitsu, H., Hinoi, T., Kawaguchi, Y., Sentani, K., Yuge, R., Kitadai, Y., Sotomaru, Y., Adachi, T., Saito, Y., Miguchi, M., et al. (2016). KRAS mutation leads to decreased expression of regulator of calcineurin 2, resulting in tumor proliferation in colorectal cancer. Oncogenesis 5, e253.   DOI
124 Durgan, D.J., Pulinilkunnil, T., Villegas-Montoya, C., Garvey, M.E., Frangogiannis, N.G., Michael, L.H., Chow, C.W., Dyck, J.R.B., and Young, M.E. (2010). Short communication: ischemia/reperfusion tolerance is timeof-day- dependent: mediation by the cardiomyocyte circadian clock. Circ. Res. 106, 546-550.   DOI
125 Sachan, N., Dey, A., Rotter, D., Grinsfelder, D.B., Battiprolu, P.K., Sikder, D., Copeland, V., Oh, M., Bush, E., Shelton, J.M., et al. (2011). Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurindependent signaling and protein phosphorylation in the heart. Circ. Res. 108, 437-445.   DOI
126 Sebio, A., Gerger, A., Matsusaka, S., Yang, D., Zhang, W., Stremitzer, S., Stintzing, S., Sunakawa, Y., Yamauchi, S., Ning, Y., et al. (2015). Genetic variants within obesity-related genes are associated with tumor recurrence in patients with stages II/III colon cancer. Pharmacogenet. Genomics 25, 30-37.   DOI
127 Delabar, J.M., Theophile, D., Rahmani, Z., Chettouh, Z., Blouin, J.L., Prieur, M., Noel, B., and Sinet, P.M. (1993). Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur. J. Hum. Genet. 1, 114-124.   DOI
128 Deutsch, S., Lyle, R., Dermitzakis, E.T., Attar, H., Subrahmanyan, L., Gehrig, C., Parand, L., Gagnebin, M., Rougemont, J., Jongeneel, C.V., et al. (2005). Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes. Hum. Mol. Genet. 14, 3741-3749.   DOI
129 Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C., and Healy, J.I. (1997). Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855-858.   DOI
130 North, K.N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S., and Beggs, A.H. (1999). A common nonsense mutation results in ${\alpha}$-actinin-3 deficiency in the general population. Nat. Genet. 21, 353-354.   DOI
131 Seto, J.T., Quinlan, K.G.R., Lek, M., Zheng, X.F., Garton, F., Macarthur, D.G., Hogarth, M.W., Houweling, P.J., Gregorevic, P., Turner, N., et al. (2013). ACTN3 genotype infuences muscle performance through the regulation of calcineurin signaling. J. Clin. Invest. 123, 4255-4263.   DOI
132 Seo, J.Y., Jung, Y., Kim, D.Y., Ryu, H.G., Lee, J., Kim, S.W., and Kim, K.T. (2019). DAP5 increases axonal outgrowth of hippocampal neurons by enhancing the cap-independent translation of DSCR1.4 mRNA. Cell Death Dis. 10, 49.   DOI
133 Serrano-Candelas, E., Aleman-Muench, G., Sole-Sanchez, S., Aubareda, A., Martinez-Hoyer, S., Adan, J., Aranguren-Ibanez, A., Pritchard, M.A., Soldevila, G., and Perez-Riba, M. (2015). RCAN 1 and 3 proteins regulate thymic positive selection. Biochem. Biophys. Res. Commun. 460, 295-301.   DOI
134 Serrano-Candelas, E., Farre, D., Aranguren-Ibanez, A., Martinez-Hoyer, S., and Perez-Riba, M. (2014). The vertebrate RCAN gene family: novel insights into evolution, structure and regulation. PLoS One 9, e85539.   DOI
135 Shaw, J.L. and Chang, K.T. (2013). Nebula/DSCR1 upregulation delays neurodegeneration and protects against APP-induced axonal transport defects by restoring calcineurin and GSK-3${\beta}$ signaling. PLoS Genet. 9, e1003792.   DOI
136 Facchin, F., Canaider, S., Vitale, L., Frabetti, F., Griffoni, C., Lenzi, L., Casadei, R., and Strippoli, P. (2008). Identification and analysis of human RCAN3 (DSCR1L2) mRNA and protein isoforms. Gene 407, 159-168.   DOI
137 Ejima, A., Tsuda, M., Takeo, S., Ishii, K., Matsuo, T., and Aigaki, T. (2004). Expression level of sarah, a homolog of DSCR1, is critical for ovulation and female courtship behavior in Drosophila melanogaster. Genetics 168, 2077-2087.   DOI
138 Ermak, G. and Davies, K.J.A. (2013). Chronic high levels of the RCAN1-1 protein may promote neurodegeneration and Alzheimer disease. Free Radic. Biol. Med. 62, 47-51.   DOI
139 Ermak, G., Harris, C.D., Battocchio, D., and Davies, K.J.A. (2006). RCAN1 (DSCR1 or Adapt78) stimulates expression of GSK-3beta. FEBS J. 273, 2100-2109.   DOI