• Title/Summary/Keyword: RC structures

Search Result 1,544, Processing Time 0.028 seconds

Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained

  • Hou, Jian;Song, Li
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.237-247
    • /
    • 2016
  • Progressive collapse resistance of RC buildings can be analyzed by considering column loss scenarios. Using finite element analysis and a static test, the progressive collapse process of a RC frame under monotonic vertical displacement of a side column was investigated, simulating a column removal scenario. A single-story 1/3 scale RC frame that comprises two spans and two bays was tested and computed, and downward displacement of a side column was placed until failure. Our study offers insight into the failure modes and progressive collapse behavior of a RC frame. It has been noted that the damage of structural members (beams and slabs) occurs only in the bay where the removal side column is located. Greater catenary action and tensile membrane action are mobilized in the frame beams and slabs, respectively, at large deformations, but they mainly happen in the direction where the frame beams and slabs are laterally restrained. Based on the experimental and computational results, the mechanism of progressive collapse resistance of RC frames at different stages was discussed further. With large deformations, a simplified calculation method for catenary action and tensile membrane action is proposed.

The investigation of seismic performance of existing RC buildings with and without infill walls

  • Dilmac, Hakan;Ulutas, Hakan;Tekeli, Hamide;Demir, Fuat
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.439-447
    • /
    • 2018
  • One of the important factors is the infill walls in the change of the structural rigidity, ductility, dynamic and static characteristics of the structures. The infill walls are not generally included in numerical analysis of reinforced concrete (RC) structural system due to lack of suitable theory and the difficulty of calculating the recommended models. In seismic regions worldwide, the residential structures are generally RC buildings with infill wall. Therefore, understanding the contribution of the infill walls to seismic performance of buildings may have a vital importance. This paper investigates the effects of infill walls on seismic performance of the existing RC residential buildings by considering requirements of the Turkish Earthquake Code (TEC). Seismic performance levels of residential RC buildings with and without walls in high-hazard zones were determined according to the nonlinear procedure given in the code. Pushover curves were obtained by considering the effect of masonry infill walls on seismic performance of RC buildings. The analysis results showed that the infill walls beneficially effected to the rigidity, roof displacements and seismic performance of the building.

Nonlinear Analysis Models to Predict the Hysteretic Behavior of Existing RC Column Members (기존 RC 기둥 부재의 이력거동 예측을 위한 비선형 해석모델)

  • Choi, Myeong-Ho;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.89-98
    • /
    • 2022
  • The recent earthquake in Korea caused a lot of damage to reinforced concrete (RC) columns with non-seismic details. The nonlinear analysis enables predicting the hysteresis behavior of RC columns under earthquakes, but the analytical model used for the columns must be accurate and practical. This paper studied the nonlinear analysis models built into a commercial structural analysis program for the existing RC columns. The load-displacement relationships, maximum strength, initial stiffness, and energy dissipation predicted by the three analysis models were compared and analyzed. The results were similar to those tested in the order of the fiber, Pivot, and Takeda models, whereas the fiber model took the most time to build. For columns subjected to axial load, the Pivot model could predict the behavior at a similar level to that of the fiber model. Based on the above, it is expected that the Pivot model can be applied most practically for existing RC columns.

Experimental Performance Evaluation of RC Beams Strengthened by TRM with Improved Bond Capacity (부착성능이 개선된 TRM 보강 RC 보의 실험적 성능평가)

  • Jeon, In Geun;Kim, Sung Jig
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • The paper presents the experimental investigation of RC beams retrofitted with Textile Reinforced Mortar (TRM), featuring enhanced bond capacity. Anchoring systems, including an extension of retrofitting length and the use of chemical anchors, are newly employed to improve the structural performance of the RC beam retrofitted with TRM. For the experimental investigation, a total of seven shear-critical RC beams, with and without stirrups, were designed and constructed. The structural behaviors of specimens retrofitted with the proposed TRM methods were compared to those of non-retrofitted specimens or specimens strengthened with conventional TRM methods. Crack pattern, force-displacement relationship, and absorbed energy were evaluated for each specimen. The experimental results indicate a significant improvement in the shear capacity of the RC beam with the proposed retrofitting method. Therefore, it is concluded that the application of an extended retrofitting length and chemical anchors to the TRM retrofitting method can effectively enhance the bond capacity of TRM, thereby improving the shear performance of RC beams.

Evaluation of Impact Damage Behavior of a Reinforced Concrete Wall Strengthened with Advanced Composite Materials (복합신소재로 보강된 철근 콘크리트 구조물의 충돌손상거동 평가)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with advanced composite materials (ACM) are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a ACM-strengthened RC wall structure.

  • PDF

A Research on the Classified Structural System in Long-Span Structures (대공간 구조형식 분류체계에 관한 연구)

  • Yang, Jae-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.81-92
    • /
    • 2002
  • The objective of this paper is to help to make decision of the appropriate structural types in long span structured building due to range of span. For the intention, based on 7 forces of structural element, it is analized the relationships among 6 configurations of structural element(d/1), 25 structural types, 4 materials, and span-length known with 186 sample from 1850 to 1996. 1) bending forces: $club(1/100{\sim}1/10),\;plate(1/100{\sim}1/10),\;rahmen(steel,\;10{\sim}24m)\;simple\;beam(PC,\;10{\sim}35m)$ 2) shearing forces: $shell(1/100{\sim}1/1000)\;hyperbolic\;paraboloids(RC,25{\sim}97m)$ 3) shearing+bending forces: plate, folded $plate(RC21{\sim}59m)$ 4) compression axial forces: club, $arch(RC,\;32{\sim}65m)$ 5) compression+tension forces: shell, braced dome $shell(RC,\;40{\sim}201m),\;vault\;shell(RC,\;16{\sim}103m)$ 6) compression+tension axial forces: $rod(1/1000{\sim}1/100)$, cable(below 1/1000)+rod, coble+rod+membrane(below 1/1000), planar $truss(steel,\;31{\sim}134m),\;arch\;truss(31{\sim}135m),\;horizontal\;spaceframe(29{\sim}10\;8m),\;portal\;frame(39{\sim}55m),\;domical\;space\;truss(44{\sim}222m),\;framed\;\;membrane(45{\sim}110m),\;hybrid\;\;membrane\;(42{\sim}256m)$ 7) tension forces: cable, membrane, $suspension(60{\sim}150m),\;cable\;\;beam(40{\sim}130m),\;tensile\;membrane(42{\sim}136m),\;cable\;-slayed(25{\sim}90m),\;suspension\;membrane(24{\sim}97m),\;single\;layer\;pneumatic\;structure(45{\sim}231m),\;double\;layer\;pneumatic\;structures(30{\sim}44m)$

  • PDF

Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading

  • Abedini, Masoud;Zhang, Chunwei
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.441-461
    • /
    • 2021
  • Reinforced concrete (RC) columns are crucial in building structures and they are of higher vulnerability to terrorist threat than any other structural elements. Thus it is of great interest and necessity to achieve a comprehensive understanding of the possible responses of RC columns when exposed to high intensive blast loads. The primary objective of this study is to derive analytical formulas to assess vulnerability of RC columns using an advanced numerical modelling approach. This investigation is necessary as the effect of blast loads would be minimal to the RC structure if the explosive charge is located at the safe standoff distance from the main columns in the building and therefore minimizes the chance of disastrous collapse of the RC columns. In the current research, finite element model is developed for RC columns using LS-DYNA program that includes a comprehensive discussion of the material models, element formulation, boundary condition and loading methods. Numerical model is validated to aid in the study of RC column testing against the explosion field test results. Residual capacity of RC column is selected as damage criteria. Intensive investigations using Arbitrary Lagrangian Eulerian (ALE) methodology are then implemented to evaluate the influence of scaled distance, column dimension, concrete and steel reinforcement properties and axial load index on the vulnerability of RC columns. The generated empirical formulae can be used by the designers to predict a damage degree of new column design when consider explosive loads. With an extensive knowledge on the vulnerability assessment of RC structures under blast explosion, advancement to the convention design of structural elements can be achieved to improve the column survivability, while reducing the lethality of explosive attack and in turn providing a safer environment for the public.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

Improvement of Underground Waterproof for RC Structures (콘크리트 구조물의 지하방수 개선 방향)

  • 민병렬;김성옥;이문환;이장화;권기주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.249-253
    • /
    • 1994
  • Nowadays, utilization of underground space is increasing due to diversion of industry structures and development of urban transportation. To ensure the underground space as a living space, many problems have to be solved and one of them is ensurance of waterproof. As the foundamental study to improve the underground waterproof system for RC structures. This study investigates the underground environment, waterproof system and factors causing leakage and provides the diredtion of improvements.

  • PDF

A proposed model of the pressure field in a downburst

  • Tang, Z.;Lu, L.Y.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.123-133
    • /
    • 2013
  • Pressure field and velocity profiles in a thunderstorm downburst are significantly different from that of an atmospheric boundary layer wind. A model of the pressure field in a downburst is presented in accordance with the experimental and numerical results. Large eddy simulation method is employed to investigate transient pressure field on impingement ground of a downburst. In addition, velocity profiles of the downburst are studied, and good agreement is achieved between the present results and the data obtained from empirical models.