References
- American Society of Civil Engineers (ASCE). (2010). Minimum design loads for buildings and other structures. SEI/ASCE 7-10. Reston, VA: American Society of Civil Engineers.
- Brunesi, E., & Nascimbene, R. (2014). Extreme response of reinforced concrete buildings through fiber force-based finite element analysis. Engineering Structures, 69, 206-215. https://doi.org/10.1016/j.engstruct.2014.03.020
- Brunesi, E., Nascimbene, R., Parisi, F., & Augenti, N. (2015). Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis. Engineering Structures, 104, 65-79. https://doi.org/10.1016/j.engstruct.2015.09.024
- Choi, H., & Kim, J. (2011). Progressive collapse-resisting capacity of reinforced concrete beam-column subassemblage. Magazine of Concrete Research, 63(4), 297-310. https://doi.org/10.1680/macr.9.00170
- Department of Defense (DoD). (2009). Unified facilities criteria, design of buildings to resist progressive collapse. Washington DC: Department of Defense.
- GB50010-2010. (2010). Code for design of concrete structures. Beijing, China: National Standard of the People's Republic of China.
- GB50011-2010. (2010). Code for seismic design of buildings. Beijing, China: National Standard of the People's Republic of China.
- General Services Administration (GSA). (2013). Alternate path analysis and design guidelines for progressive collapse resistance. Washington DC: General Services Administration.
- Hallquist, J. (2007). LS-DYNA keyword user's manual. Livermore: Livermore Software Technology Corporation. Version 971.
- Hou, J., & Yang, Z. (2014). Simplified models of progressive collapse response and progressive collapse-resisting capacity curve of RC beam-column sub-structures. Journal of Performance of Constructed Facilities, 28, 04014008. doi:10.1061/(ASCE)CF.1943-5509.0000492.
- Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y., & Nethercot, D. A. (2008). Progressive collapse of multi-storey buildings due to sudden column loss-part I: Simplified assessment framework. Engineering Structures, 30, 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011
- Kang, S. B., Tan, K. H., & Yang, E. H. (2015). Progressive collapse resistance of precast beam-column sub-assemblages with engineered cementitious composites. Engineering Structures, 98(1), 186-200. https://doi.org/10.1016/j.engstruct.2015.04.034
- Kim, J., & Choi, H. (2015). Monotonic loading tests of RC beam-column subassemblage strengthened to prevent progressive collapse. International Journal of Concrete Structures and Materials, 9(4), 401-413. https://doi.org/10.1007/s40069-015-0119-2
- Li, Y., Lu, X. Z., Guan, H., & Ye, L. P. (2011). An improved tie force method for progressive collapse resistance design of reinforced concrete frame structures. Engineering Structures, 33, 2931-2942. https://doi.org/10.1016/j.engstruct.2011.06.017
- Malaga-Chuquitaype, C., Elghazouli, A. Y., & Enache, R. (2016). Contribution of secondary frames to the mitigation of collapse in steel buildings subjected to extreme loads. Structure and Infrastructure Engineering, 12(1), 45-60. https://doi.org/10.1080/15732479.2014.994534
- Mehrdad, S., Andre, W., & Ali, K. (2011). Bar fracture modeling in progressive collapse analysis of reinforced concrete structures. Engineering Structures, 33, 401-409. https://doi.org/10.1016/j.engstruct.2010.10.023
- Mehrdad, S., Marlon, B., & Serkan, S. (2007). Experimental and analytical progressive collapse evaluation of actual reinforced concrete structure. ACI Structural Journal, 104(6), 731-739.
- Pachenari, A., & Keramati, A. (2014). Progressive collapsed zone extent estimation in two-way slab floors by yield line analysis. Magazine of Concrete Research, 66(13), 685-696. https://doi.org/10.1680/macr.13.00249
- Pham, X. D., & Tan, K. H. (2013a). Experimental study of beam-slab substructures subjected to a penultimate-internal column loss. Engineering Structures, 55, 2-15. https://doi.org/10.1016/j.engstruct.2013.03.026
- Pham, X. D., & Tan, K. H. (2013b). Membrane actions of RC slabs in mitigating progressive collapse of building structures. Engineering Structures, 55, 107-115. https://doi.org/10.1016/j.engstruct.2011.08.039
- Qian, K., Li, B., & Ma, J. X. (2015). Load carrying mechanism to resist progressive collapse of RC buildings. ASCE Journal of Structural Engineering, 141(2), 04014107. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001046
- Sadek, F., Main, J. A., Lew, H. S., & Bao, Y. H. (2011). Testing and analysis of steel and concrete beam-column assemblies under a column removal scenario. ASCE Journal of Structural Engineering, 137(9), 881-892. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000422
- Shi, Y. C., & Li, Z. X. (2009). Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns. Structural Engineering and Mechanics, 32(2), 251-267. https://doi.org/10.12989/sem.2009.32.2.251
- Su, Y. P., Tian, Y., & Song, X. S. (2009). Progressive collapse resistance of axially-restrained frame beams. ACI Structural Journal, 106(5), 600-607.
- Yi, W. J., He, Q. F., Xiao, Y., & Kunnath, S. K. (2008). Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures. ACI Structural Journal, 105(4), 433-439.
Cited by
- Experimental and Measurement Methods for the Small-Scale Model Testing of Lateral and Torsional Stability vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0198-3
- Flexural, Compressive Arch, and Catenary Mechanisms in Pseudostatic Progressive Collapse Analysis vol.32, pp.1, 2016, https://doi.org/10.1061/(asce)cf.1943-5509.0001110
- Modeling structural behavior of reinforced concrete beam-slab substructures subject to side-column loss at large deflections vol.21, pp.7, 2016, https://doi.org/10.1177/1369433217737120
- Modelling of Stirrup Confinement Effects in RC Layered Beam Finite Elements Using a 3D Yield Criterion and Transversal Equilibrium Constraints vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0278-z
- Experimental Study and Numerical Analysis on the Progressive Collapse Resistance of SCMS vol.19, pp.1, 2016, https://doi.org/10.1007/s13296-018-0123-x
- Progressive Collapse Resistance of GFRP-Strengthened RC Beam-Slab Subassemblages in a Corner Column-Removal Scenario vol.23, pp.1, 2016, https://doi.org/10.1061/(asce)cc.1943-5614.0000917
- Strengthening and Retrofitting Precast Concrete Buildings to Mitigate Progressive Collapse Using Externally Bonded GFRP Strips vol.23, pp.3, 2019, https://doi.org/10.1061/(asce)cc.1943-5614.0000943
- Failure Mechanism of Composite Frames Under the Corner Column-Removal Scenario vol.19, pp.3, 2019, https://doi.org/10.1007/s11668-019-00644-8
- Factors influencing the progressive collapse resistance of RC frame structures vol.27, pp.None, 2016, https://doi.org/10.1016/j.jobe.2019.100986
- Progressive collapse of regular- and irregular-plan concrete structures in an earthquake vol.174, pp.2, 2016, https://doi.org/10.1680/jstbu.18.00138
- Interaction between infill walls and reinforced concrete frames after column removal vol.174, pp.7, 2021, https://doi.org/10.1680/jstbu.18.00218
- A Review on the Progressive Collapse Analysis of Reinforced Concrete Frame Structures vol.822, pp.1, 2016, https://doi.org/10.1088/1755-1315/822/1/012003
- Uncertainty analysis on progressive collapse of RC frame structures under dynamic column removal scenarios vol.46, pp.None, 2016, https://doi.org/10.1016/j.jobe.2021.103811