• Title/Summary/Keyword: RC joint

Search Result 281, Processing Time 0.027 seconds

An Experimental Study on Shear Friction Behavior of RC Slab and SC(Steel Plate Concrete) Wall Structure with Connection Joint (RC 슬래브와 SC 벽 접합부의 전단마찰 거동에 관한 실험연구)

  • Lee, Kyung Jin;Hwang, Kyeong Min;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.623-634
    • /
    • 2013
  • In this study, the structure behavior of RC slab and SC shear wall connection was investigated. Also experimental study was performed to evaluate the factor of safety of demand shear connection strength in KEPIC SNG Standard. As a result, shear friction strength of connection was known about 300kN and shear strength of rebar increased according to the displacement increase. With the installment of the lower rebars, 40% shear strength increased compared to the non-rebar specimen.

Seismic Performance Assessment of Roof-Level Joints with Steel Fiber-Reinforced High-Strength Concrete (강섬유보강 고강도콘크리트를 적용한 최상층 접합부의 내진성능 평가)

  • Kim, Sang-Hee;Kwon, Byung-Un;Kang, Thomas H.-K.
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • This study was conducted to verify seismic performance of special moment frame's joints at roof-level with high-strength concrete and SD600 bars. K-RC-H was designed according to the seismic code and K-HPFRC-H had 150% of the original hoop spacing and 1.0% steel fiber volume fraction compared with K-RC-H. Both specimens had remarkable seismic performance without noticeable decrease in moment, but with very good energy dissipation before rebar failure. The U-bars in the joint sufficiently constrained rebar's action that pushed the cover upward. SD600 bars with $1.25l_{dt}$ had minimum slip in the joint. It was considered that the steel fiber contributed to improvement of the bending moment and joint shear distortion, and the result showed that it would be possible to increase the hoop spacing to 150% of the regular spacing.

Changes in Service life in RC Containing OPC and GGBFS Considering Effects of Loadings and Cold Joint (OPC 및 GGBFS를 혼입한 콘크리트의 하중조건과 콜드조인트에 따른 내구수명 변화)

  • Kim, Hyeok-Jung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.466-473
    • /
    • 2017
  • RC (Reinforced Concrete) member has varying service life due to varying diffusion characteristics with loading conditions even if it is exposed to constant exterior conditions. In the paper, quantitative parameters are obtained through adopting the previous results for effects of compressive, tensile, and cold joint on chloride diffusion in OPC (Ordinary Portland Cement) and GGBFS (Ground Granulated Blast Furnace Slag) concrete. Service life is evaluated in RC simple beam with 10.0m of span through increasing loading from self weight (2.5kN/m) to the loading to cracking moment (5.5kN/m). In OPC concrete without cold joint, service life changes to 89.4% for tensile region and 101% for compressive region with loadings while GGBFS concrete has 80.0% and 106%, respectively. For cold joint area, GGBFS concrete shows much reduced service life to 82~80% in compressive region and 69~61% in tensile region, which is caused by the lower diffusion in normal condition but relatively higher increasing cold joint effect than OPC concrete.

Strength Experimental Study on Precast Column-R.C. Foundation Anchor Joint Subjected to Cyclic Horizontal Loading (반복-수평력을 받는 프리캐스트기둥- RC기초 Anchor 접합부의 내력 실험 연구)

  • Lee, Ho;Jung, Hwoan-Mok;Cha, Byung-Gi;Byun, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • This paper experimentally evaluates the strength characteristics of precast column-R.C. foundation anchor joint subjected to the cyclic horizontal load. The study presents differences in accurate stress transfer path and destruction mechanism between the concrete structural body applying the precast column-R.C. foundation anchor joint and the concrete structural body applying the steel joint. the result from width load experiment on reinforcing steel under the cyclic horizontal load provides the necessary minimum insertion length to construct the precast column-R.C. foundation anchor joint. This study also presents the accurate stress transfer path and destruction mechanism on the anchor joint th meet the customer's requirements, comparing stress transfer path and destruction mechanism provided by the experiment and those provided by the product manual. Eventually, this study presents all the necessary fundamental data to provide the construction design with accurate number of reinforcing steel, diameter of the steel, fixation length of the steel, etc. to build the optimum precast concrete column.

  • PDF

Stress-strain model of weak PVC-FRP confined concrete column and strong RC ring beam joint under eccentric compression

  • Yu, Feng;Zhang, Nannan;Fang, Yuan;Liu, Jie;Xiang, Guosheng
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.13-27
    • /
    • 2020
  • To investigate the stress-strain relation of PVC-FRP Confined Concrete (PFCC) column with RC ring beam joint subjected to eccentric compression, the experiment of 13 joint specimens, which were designed with principle of "strong joint and weak column", were presented. Several variable parameters, such as reinforcement ratio, width and height of ring beam, FRP strips spacing and eccentricity, were considered. The specimens were eventually damaged by the crushing of concrete, the fracture of PVC tube and several FRP strips. With the FRP strips spacing or eccentricity increased, the ultimate carrying capacity of specimens declined. The strain of FRP strips and axial strain of PVC tube decreased as FRP strips spacing decreased. The decrease of eccentricity would slow down the development of strain of FRP strips and axial strain of PVC tube. The slope of stress-strain curve of PFCC column decreased as FRP strips spacing or eccentricity increased. The ultimate strain of PFCC column reduced as FRP strips spacing increased, while the effect of eccentricity on the ultimate strain of PFCC was not distinct. Considering the influence of eccentricity on the stress-strain relation, a modified stress-strain model for conveniently predicting the weak PFCC column and strong RC ring beam joint under eccentric compression was proposed and it was in good agreement with the experimental data.

Influence of joint modelling on the pushover analysis of a RC frame

  • Costa, Ricardo;Providencia, Paulo;Ferreira, Miguel
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.641-652
    • /
    • 2017
  • In general, conventional analysis and design of reinforced concrete (RC) frame structures overlook the role of beam-column (RCBC) joints. Nowadays, the rigid joint model is one of the most common for RCBC joints: the joint is assumed to be rigid (unable to deform) and stronger than the adjacent beams and columns (does not fail before them). This model is popular because (i) the application of the capacity design principles excludes the possibility of the joint failing before the adjacent beams and (ii) many believe that the actual behaviour of RCBC joints designed according to the seismic codes produced mainly after the 1980s can be assumed to be nominally rigid. This study investigates the relevance of the deformation of RCBC joints in a standard pushover analysis at several levels: frame, storey, element and cross-section. Accordingly, a RC frame designed according to preliminary versions of EN 1992-1-1 and EN 1998-1 was analysed, considering the nonlinear behaviour of beams and columns by means of a standard sectional fibre model. Two alternative models were used for the RCBC joints: the rigid model and an explicit component based nonlinear model. The effect of RCBC joints modelling was found to be twofold: (i) the flexibility of the joints substantially increases the frame lateral deformation for a given load (30 to 50%), and (ii) in terms of seismic performance, it was found that joint flexibility (ii-1) appears to have a minor effect on the force and displacement corresponding to the performance point (seismic demand assessed at frame level), but (ii-2) has a major influence on the seismic demand when assessed at storey, element and cross-section levels.

Experimental Test on the Effect of Onsite Welding of Steel Plates for a Joint Between Concrete Columns and a Steel Belt Truss

  • Shim, Hak Bo;Yun, Da Yo;Park, Hyo Seon
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.155-166
    • /
    • 2020
  • To connect exterior reinforced concrete (RC) columns with the steel belt truss, the gusset plates are welded to the steel plates embedded in the RC column. Then, the concrete around an embedded plate is very likely to be damaged by the heat input from a long-time (6 to 48 hours) welding of the embedded and gusset plates at a joint between RC columns and steel belt truss. However, very few studies have assessed the concrete damage caused by the welding heat between embedded and gusset plates, and no clear onsite solution has been found. In this paper, experimental tests have been carried out on 4 full-scale specimen to analyze the effect of long-time (about 6 hours) onsite welding (1-side welding and 3-side welding) between a gusset plate and an embedded plate in high strength concrete with compressive strength of 55 MPa and 80 MPa on RC columns. The effect of the long-time welding heat of embedded and gusset plates, which are used in real high-rise building construction sites, on concrete is analyzed in terms of the following three items: 1) temperature distribution, 2) pattern and characteristics of cracks, and 3) effect of the cracks on the compressive strength of RC column. Based on the experimental results, even though the heat input up to about 150? from the long-time onsite welding on the high-strength concrete column for the joint could result in concrete cracks in a radial form, it is found that the welding cracks have no effect on the axial stiffness and strength of the concrete column.

Evaluation on the Deformation Capacity of RC Frame Structure with Strong Column-Weak Beam (강한 기둥-약한 보로 설계된 철근 콘크리트 골조구조의 변형성능 평가에 관한 연구)

  • Seo, Soo-Yeon;Lee, Li-Hyung;Chin, Se-Ok;Choi, Yun-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.225-233
    • /
    • 2003
  • Recently, the concern for displacement-based design has been increased as a performance based design method in which the deformation capacity of structure becomes so important. In this paper, a process is presented to accurately evaluate the deformation capacity of multistory RC frame structure. In the calculation of drift of frame, the deformation of beam and column as well as the deformation of anchorage and joint are considered. From the comparison between previous test and calculation results, the usefulness of the process is verified. The proposed process is also applied to the multiple story RC frame buildings(5, 10, 15 stories) designed to have strong column-weak beam. The results showed that the deformation capacity of the buildings could be not properly evaluated when deformations of anchorage and joint were ignored.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.