• Title/Summary/Keyword: RC 기둥

Search Result 389, Processing Time 0.018 seconds

Evaluation on the Deformation Capacity of RC Frame Structure with Strong Column-Weak Beam (강한 기둥-약한 보로 설계된 철근 콘크리트 골조구조의 변형성능 평가에 관한 연구)

  • Seo, Soo-Yeon;Lee, Li-Hyung;Chin, Se-Ok;Choi, Yun-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.225-233
    • /
    • 2003
  • Recently, the concern for displacement-based design has been increased as a performance based design method in which the deformation capacity of structure becomes so important. In this paper, a process is presented to accurately evaluate the deformation capacity of multistory RC frame structure. In the calculation of drift of frame, the deformation of beam and column as well as the deformation of anchorage and joint are considered. From the comparison between previous test and calculation results, the usefulness of the process is verified. The proposed process is also applied to the multiple story RC frame buildings(5, 10, 15 stories) designed to have strong column-weak beam. The results showed that the deformation capacity of the buildings could be not properly evaluated when deformations of anchorage and joint were ignored.

Spatting and Fire Enduring Properties of High Strength RC Column Subjected to Axial Load Depending on Fiber Contents (중심 축하중을 받는 고강도 RC기둥의 섬유 혼입량에 따른 폭열 및 내화 성상)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Lee, Jae-Sam;Kim, Kyoung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.83-90
    • /
    • 2006
  • This paper investigates experimentally the fire resistance performance and spatting resistance of high performance reinforced concrete column member subjected to fire containing polypropylene fiber(PP fiber) and cellulose fiber(CL fiber). An increase in PP fiber and CL fiber contents, respectively resulted in a reduction of fluidity due to fiber ball effect. Air content is constant with m increase in fiber content. Compressive strength reached beyond 50 MPa. Based on fire resistance test, severe failure occurred with control concrete specimen, which caused exposure of reinforcing bar. No spall occurred with specimen containing PP fiber. This is due to the discharge of internal vapour pressure. Use of CL fiber superior to control concrete in the side of spatting resistance, localized failure at comer of specimen was observed. Corner of specimen had deeper neutralization than surface of specimen. Specimen containing PP fiber had the least damaged area due to spatting. Neutralization depth ranged between 6 and 8 mm Residual compressive strength of specimen containing PP fiber maintained 40%, which is larger than control concrete with 20% of residual strength. Specimen containing CL fiber had 25% or residual strength.

Behavior Analysis of Eccentrically Loaded Restrained Reinforced Concrete Slender Columns (편심축하중을 받는 구속 RC장주의 거동 해석)

  • Park, Jai Oun;Choung, Kyoung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.11-24
    • /
    • 1990
  • The effect of end restraints for adjoining members is the different variables influencing the column ultimate strength and the behavior. The propose of this study is to analyze eccentrically loaded reinforced concrete columns with the end restraind effect having rectangular cross-section and general boundary conditions. Accordingly, this investigation are to construct a typical analytical model of the reinforced concrete columns with general end boundary conditions. The mechanical components of the analytical model are to be rationally defined the actual behavior as possible, and the different variables influencing the behavior and the ultimate strength of the reinforced concrete columns are investigated by using a parametric study.

  • PDF

Design of Fire-Resistance in RC Structure Buildings (콘크리트 구조물의 내화설계)

  • 김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.30-36
    • /
    • 2002
  • 콘크리트가 화재에 노출될 경우 가열에 의한 재질의 노화 및 열팽창에 의한 열응력의 발생에 따라 주요구조부인 기둥 및 보에 큰 손상이 생기게 되어 그 내력은 크게 저하하게 된다. 철근 콘크리트 구조물의 화재 상황을 조사해 보면 (그림 1)과 같이 열응력에 의한 기둥의 전단파괴, 보의 휨파괴 및 부재의 폭열 등이 보여진다.(중략)

An Evaluation of Blast Resistance Capacity of RC Columns under Eccentric Load (편심하중을 받는 철근콘크리트 기둥의 폭발 저항성 평가)

  • Kim, Han-Soo;Lee, Jae-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.148-151
    • /
    • 2011
  • 현재 방폭설계 관련 설계지침은 기둥제거시나리오를 이용한 대체하중경로법을 주로 적용하고 있지만, 실제로 폭발이 발생하였을 때 기둥의 완전한 파괴가 일어나지 않을 경우 이 방식을 적용하는 것은 적합하지 않다. 따라서 본 논문에서는 비선형 동적 해석 프로그램인 AUTODYN을 이용해 편심하중을 받는 철근 콘크리트 기둥의 잔존 폭발 저항 성능을 평가하는 방식을 제안하였다. 해석결과를 비교해보면 TNT양과 축하중이 클수록 철근콘크리트 기둥의 잔존 폭발 저항 성능이 감소되었다. 이것은 폭발이 발생하기전의 기둥의 편심하중에 의한 응력상태에 따라 폭발 저항 성능이 달라짐을 알 수 있다.

  • PDF

Fire Damaged Behavior of Real Sized Normal Strength RC Columns (화해를 입은 실물크기 보통강도 RC 기둥의 거동)

  • Lee, Cha-Don;Shin, Yeong-Soo;Hong, Sung-Gul;Lee, Kyung-Ku;Lee, Seung-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.866-876
    • /
    • 2003
  • Experiments were performed for the real sized 12 reinforced concrete columns of 350${\times}$350${\times}$3350 mm with normal concrete in order to observe the fire-damaged behavior of these columns. Columns were heated according to the ISO heating curve. Main experimental parameters were: magnitude of axial load, heating time, cover thickness, and eccentricity. Effects of these parameters on the axial expansion and contraction, rotation, buckling, ISO fire resistance, and structural stability were experimentally quantified. It has been observed that the contraction rate of axial deformation was affected mostly by the duration of heating time and buckling of reinforcement or member by the magnitude of axial load, duration of heating time, cover thickness and eccentricity in order. Based on the experimental observations, ISO fire resistance criteria were qualiatively criticized.

Failure Behavior of Octagonal Flared RC Columns Using Oblong Hoops (장방형 띠철근을 이용한 팔각형 플레어 RC 기둥의 파괴거동)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.58-68
    • /
    • 2014
  • Transverse steel bars are used in the plastic hinge zone of columns to insure adequate confinement, prevention of longitudinal bar buckling and ductile behavior. Fabrication and placement of rectangular hoops and cross-ties in columns are difficult to construct and require larger amount of transverse steels. In this paper, to solve these problems, the new lateral confinement method using oblong hoop is proposed for the transverse confinement of columns of the oblong cross-section and flared column. The experimental study for octagonal oblong cross-section was carried out by the flared columns test in strong axis. The lateral confinement method using proposed oblong hoop detail showed satisfactory performance of lateral confinement. Therefore it can be the alternative for oblong cross-section and flared column with improved workability and cost-efficiency.

Equivalent Column Stiffness Equations for Design of RC Slender Columns under Later Loads (횡하중을 받는 철근콘크리트 장주설계를 위한 기둥의 등가강성식)

  • 이재훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.156-164
    • /
    • 1995
  • P-${\Delta}$ analysis by use of the equivalent colurnn stiffness determined by Momcnt curvature-Thrust curves provides relatively precise analytical results for unbraced reinforced concrete columns, however it needs a complicated arialytical procedure. Equ~valent col~rnn stiffness equations are proposed for a simple analytical procedure which are ckterrnined by the Moment-Curvature Thrust curves of the practically useable sections. Thc proposed stiffness equations are appiled to P-${\Delta}$ analysis and rnornent magnifier method to compare with the selected test result. Use of the proposed stiffness equations may slrnplify the P-${\Delta}$ i.rialvtica1 procedure and improve the accuracy of moment magnifier niethod.

Seismic Performance of RC Columns Confined by Outside Lateral Reinforcement (외측 횡보강재로 구속된 철근콘크리트 기둥의 내진성능)

  • Lee, Do Hyung;Oh, Jangkyun;Yu, Wan Dong;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.189-196
    • /
    • 2012
  • In this paper, reinforced concrete columns test has been conducted under repeated lateral load reversals. The test columns have been reinforced with outside lateral confinement members in addition to transverse reinforcements. For this purpose, a strainless steel and a GFRP have been employed for the lateral confinement members. Primary parameters are types, thickness and spacing of the lateral confinement members. Experimental results reveal that columns reinforced with lateral confinement members exhibit improved ductility and energy dissipation capacity in comparison with those unreinforced. It is thus concluded that the present approach can be of a useful scheme for the seismic retrofitting of reinforced concrete columns.

Nonlinear Finite Element Analysis of Reinforced Concrete Columns with Steel Clip-Type Implements Subjected to Cyclic Lateral Loading (반복 횡하중이 작용하는 강재 클립형 연결장치로 결속된 철근 콘크리트 기둥의 비선형 유한요소해석)

  • Yong Joo Kim;Byong Jeong Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.243-250
    • /
    • 2023
  • Both ends of the hoop reinforcement in the reinforced concrete (RC) columns subjected to lateral loading must necessarily be bent by 135° so as to ensure a sufficient level of ductility. However, as this reinforcement is extremely difficult to construct, this requirement is often not satisfied at construction sites. This study entailed an experimental investigation on RC columns subjected to cyclic lateral loading equipped with steel clip-type implements that were developed to replace the complicated 135° hoop reinforcement details. Four RC column specimens were manufactured, and the main test parameters included the use of high-strength concrete and steel clip-type implements. Furthermore, three-dimensional finite element models were employed to evaluate the structural performances of the test specimens via nonlinear analyses. The results of the test and finite element analyses indicate that the RC columns with the steel clip-type implements exhibit structural performances equal to or better than those with the 135° hoop reinforcement details. Further, the finite element analysis results agree well with the test results.