• 제목/요약/키워드: RBSC

검색결과 26건 처리시간 0.026초

용융 Si 침윤 방법에 의한 다공성 RBSC 제조 (Fabrication of Porous RBSC by Si Melt Infiltration)

  • 서기식;박상환;권혁보
    • 한국세라믹학회지
    • /
    • 제37권11호
    • /
    • pp.1119-1125
    • /
    • 2000
  • 용융 Si 침윤 방법에 의한 새로운 다공질 RBSC 제조공정이 개발되었으며, 용융 Si 침윤공정 방법으로 제조된 다공질 RBSC의 최대 3-점 파괴 강도는 18 MPa, 최대 기공율은 46% 범위이었다. 용융 Si 침윤방법으로 제조된 다공질 RBSC의 기계적 특성 및 기공율은 성형체내 SiC 입자 표면의 카본 source의 양 및 침윤시 사용된 Si의 양에 직접적으로 영향을 받는 것으로 나타났다. 침윤시 상대 Si 양은 40%를 사용하였으며, SiC 입자 표면에 graphite와 phenol resin을 함께 코팅한 성형체를 사용하여 제조된 다공질 RBSC에서 최대 파괴강도 값을 얻었다. 상대 Si의 양의 증가는 다공질 RBSC의 파괴강도를 감소시켰으며, SiC 입자 표면의 카본 source 코팅층은 graphite와 phenol resin을 같이 사용하였을 때 다공질 RBSC의 파괴강도는 증가되었으나, RBSC 내 기공율은 감소되었다.

  • PDF

다층 기공구조를 갖는 다공성 반응소결 탄화규소 다공체 제조 (Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structures)

  • 조경선;김규미;박상환
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.534-539
    • /
    • 2009
  • Reaction Bonded Silicon Carbide(RBSC) has been used for engineering ceramics due to low-temperature fabrication and near-net shape products with excellent structural properties such as thermal shock resistance, corrosion resistance and mechanical strength. Recently, attempts have been made to develop hot gas filter with gradient pore structure by RBSC to overcome weakness of commercial clay-bonded SiC filter such as low fracture toughness and low reliability. In this study a fabrication process of porous RBSC with multi-layer pore structure with gradient pore size was developed. The support layer of the RBSC with multi-layer pore structure was fabricated by conventional Si infiltration process. The intermediate and filter layers consisted of phenolic resin and fine SiC powder were prepared by dip-coating of the support RBSC in slurry of SiC and phenol resin. The temperature of $1550^{\circ}C$ to make Si left in RBSC support layer infiltrate into dip-coated layer to produce SiC by reacting with pyro-carbon from phenol resin.

SiC Fiber 강화 다공질 반응 소결 탄화규소 Composite의 제조 및 기계적 특성 (Fabrication of SiC Fiber Reinforced Porous Reaction Bonded SiC Composite and Its Mechanical Properties)

  • 한재호;박상환
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.509-514
    • /
    • 2006
  • In this study, chopped Hi-Nicalon SiC fiber Reinforced Porous Reaction Bonded SiC (RBSC) composites and it fabrication process were developed by using Si melt infiltration process. The porosity and average pore size in fabricated chopped SiC fiber reinforced porous RBSC composites were in the range of $30{\sim}40%$ and $40-90{\mu}m$, which mainly determined by the SiC powder size used as starting material and amount of residual Si in porous composites. The maximum flexural strength of chopped SiC fiber reinforced porous RBSC composite was as high as 80 MPa. The delayed fracture behavior was observed in chopped SiC fiber reinforced porous RBSC composites upon 3-point bending strength test.

반응소결 탄화규소 다공체의 기계적 특성 (Mechanical Properties of Porous Reaction Bonded Silicon Carbide)

  • 황성식;박상환;한재호;한경섭;김찬목
    • 한국세라믹학회지
    • /
    • 제39권10호
    • /
    • pp.948-954
    • /
    • 2002
  • 차세대 발전 시스템에서 사용되는 고온 가스 필터용 지지층 소재를 제조하기 위하여 용융 Si 침윤 방법으로 기공율이 32∼36%, 주기공 크기가 37∼90 ${\mu}m$ 범위를 갖는 고강도 다공질 반응소결 탄화규소(RBSC)를 개발하였다. 반응소결 탄화규소 다공체의, 최대 파괴강도는 120MPa이었으며, 용융 Si 침윤 방법으로 제조된 반응소결 탄화규소 다공체에서는 SiC 입자 사이에 SiC/Si로 이루어진 기지상이 형성되어 있기 때문에 파괴 강도 및 열충격 특성이 점토 결합 탄화규소 다공체 보다 우수하였다. 반응소결 탄화규소 다공체의 기공율 및 기공 크기는 잔류 Si의 양 및 성형체에 사용한 SiC 입자 크기에 따라 다르게 나타났다.

Bacillus subtilis에 의해 발효된 다양한 콩의 품질 특성 (Quality Characteristics of Various Bean Varieties Fermented with Bacillus subtilis)

  • 김기혁;이규희
    • 한국식품조리과학회지
    • /
    • 제32권5호
    • /
    • pp.541-548
    • /
    • 2016
  • Purpose: For dissecting the possible benefits and usages of Cheonggukjang, five different beans, soybean, black soybean, red bean, chickpea, and lentil bean, underwent the fermentation process along with Bacillus subtilis. Methods: Resultant Cheonggukjang physicochemical and sensory properties such as pH, amino type nitrogen, slime contents, rheological properties, and sensory strength and consumer acceptance were analyzed. Results: Values of pH were found to be highest in Cheonggukjang made with soybean (SC), followed by Cheonggukjang made with black bean (BSC) and Cheonggukjang made with red bean and soybean mixture (RBSC), and lastly Cheonggukjang made with chickpea (CBC) and lentil bean (LBC). Amino type nitrogen values were shown to be highest in SC with a value of $394.74{\pm}28.80mg%$, subsequently were values taken from RBSC, followed by BSC, CBC, and lastly LBC. Slime contents were the highest in SC with a value of $3.44{\pm}0.36%$, with RBSC, BSC, CBC, and LBC without statistical difference. Total colony count was found to show higher value in BSC, SC, and RBSC, in contrast to the lower values found in CBC and LBC. Color was shown to be lightest in CBC and with darker shades shown that of SC, LBC, RBSC, and BSC in descending order. In rheological properties, hardness, adhesiveness, and viscosity were found to be highest in SC. Sensory strength analysis and sticky appearance were highest in SC, with fermented odor being lowest in CBC and BSC. The strength of sweetness, sourness, and umami taste did not show statistical difference, however, bitterness was shown to be highest in LBC and lowest in CBC, SC, and BSC. In the consumer acceptance test, overall acceptance was highest in SC and CBC. Conclusion: In conclusion, SC was found to be the best bean variety for making Cheonggukjang fermented with Bacillus subtilis, however, CBC may act as an alternative for manufacture of Cheonggukjang resulting in sound consumer acceptance.

반응소결 탄화규소 세라믹스의 열물성과 기계적 특성에 미치는 SiC 크기의 영향 (Effect of the SiC Size on the Thermal and Mechanical Properties of Reaction-bonded Silicon Carbide Ceramics)

  • 권창섭;오윤석;이성민;한윤수;신현익;김영석;김성원
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.467-472
    • /
    • 2014
  • RBSC (reaction-bonded silicon carbide) represents a family of composite ceramics processed by infiltrating with molten silicon into a skeleton of SiC particles and carbon in order to fabricate a fully dense body of silicon carbide. RBSC has been commercially used and widely studied for many years, because of its advantages, such as relatively low temperature for fabrication and easier to form components with near-net-shape and high relative density, compared with other sintering methods. In this study, RBSC was fabricated with different size of SiC in the raw material. Microstructure, thermal and mechanical properties were characterized with the reaction-sintered samples in order to examine the effect of SiC size on the thermal and mechanical properties of RBSC ceramics. Especially, phase volume fraction of each component phase, such as Si, SiC, and C, was evaluated by using an image analyzer. The relationship between microstructures and physical properties was also discussed.

튜브형상 반응소결 탄화규소 부품의 시편크기에 따른 강도평가 유용성 고찰 (Mechanical Strength Values of Reaction-Bonded-Silicon-Carbide Tubes with Different Sample Size)

  • 김성원;이소율;오윤석;이성민;한윤수;신현익;김영석
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.450-456
    • /
    • 2017
  • Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.

침윤된 Si 및 성형체내 Carbon Source의 양이 반응소결 탄화규소 다공체의 기공률 및 파괴강도에 미치는 영향 (Effects of Amounts of Carbon Source and Infiltrated Si on the Porosity and Fracture Strength of Porous Reaction Bonded SiC)

  • 윤성호;;김영도;박상환
    • 한국세라믹학회지
    • /
    • 제44권7호
    • /
    • pp.381-386
    • /
    • 2007
  • A porous reaction bonded silicon carbide (RBSC) was fabricated by a molten Si infiltration method. The porosity and flexural strength of porous RBSC fabricated in this study were dependent upon the amount of carbon source used in the SiC/carbon preform as well as the amount of Si infiltrated into the SiC/carbon preform. The porosity and flexural strength of porous RBSC were in the range of $20 vo1.{\sim}49 vo1.%$ and $38{\sim}61 MPa$, respectively. With increase of carbon contents and molten Si for infiltration, volume fraction of the pores was gradually decreased, and flexural strength was increased. The porous RBSCs fabricated with the same amount of molten Si show less residual Si around neck with increase of carbon source, as well as a new SiC was formed around neck which resulted in the decreased porosity and improvement of the flexural strength. In addition, decrease of the porosity and increase of the flexural strength were also obtained by increase of the amount of molten Si with the same amount of carbon source. However, it was found that the flexural strength of porous RBSC depends on the porosity rather than the amount of the newly formed SiC in neck phase between SiC particles used as a starting material.

Y2O3 첨가 탄소 프리폼에 Si 용융 침투에 의해 제조한 반응 소결 탄화규소 (RBSC Prepared by Si Melt Infiltration into the Y2O3 Added Carbon Preform)

  • 장민호;조경식
    • 한국분말재료학회지
    • /
    • 제28권1호
    • /
    • pp.51-58
    • /
    • 2021
  • The conversion of carbon preforms to dense SiC by liquid infiltration is a prospectively low-cost and reliable method of forming SiC-Si composites with complex shapes and high densities. Si powder was coated on top of a 2.0wt.% Y2O3-added carbon preform, and reaction bonded silicon carbide (RBSC) was prepared by infiltrating molten Si at 1,450℃ for 1-8 h. Reactive sintering of the Y2O3-free carbon preform caused Si to be pushed to one side, thereby forming cracking defects. However, when prepared from the Y2O3-added carbon preform, a SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C → SiC reaction at 1,450℃, 3C and 6H SiC phases, crystalline Si, and Y2O3 were generated based on XRD analysis, without the appearance of graphite. The RBSC prepared from the Y2O3-added carbon preform was densified by increasing the density and decreasing the porosity as the holding time increased at 1,450℃. Dense RBSC, which was reaction sintered at 1,450℃ for 4 h from the 2.0wt.% Y2O3-added carbon preform, had an apparent porosity of 0.11% and a relative density of 96.8%.