• Title/Summary/Keyword: RAW 264.7 murine macrophage

Search Result 299, Processing Time 0.024 seconds

In vitro Anti-inflammation Effect of Adventitious Shoots of Toona sinesis in Propionibacterium acnes-induced Skin Dermatitis

  • Hyeon-Ji Lim;In-Sun Park;Seung-Il Jeong;Kang-Yeol Yu;Chan-Hun Jung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.73-73
    • /
    • 2020
  • Toona sinensis (TS) leaf is known to antinociceptive, antioxidative stress and skin moisturizing effects. Acnes vulgaris is a chronic skin disease with various symptoms including itchiness, pain and interruption of normal skin function. Propionibacterium acnes (P. acnes) is a major factor in the occurrence of inflammatory acnes. This study evaluated the antioxidant and anti-inflammation effects by TS extract from adventitious shoots. TS extract showed anti-inflammatory activities by suppression of pro-inflammation mediators (iNOS and COX-2) in LPS-stimulated RAW264.7 cells. TS extract also has anti-inflammatory activities by inhibiting the secretion of pro-inflammatory cytokines on P. acnes-stimulated HaCaT cells. These effects were regulated by MAPK signaling pathway. Therefore, we suggest that TS extract from adventitious shoots might have applications as a medicine for treating P. acnes-induced skin diseases.

  • PDF

Isolation of Alkaloids with Immune Stimulating Activity from Oryza sativa cv. Heugnambyeo (흑남벼 함유 Alkaloid 분리 및 면역효능 연구)

  • Ryu, Min-Ju;Chung, Ha-Sook
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • We describe the immune stimulatory effects of compounds determined by means of activity-monitored extraction and isolation techniques. As a result, 4-carboethoxy-6-methoxy-2-quinolone (1) and 4-carboethoxy-6-hydroxy-2-quinolone (2) were isolated from the ethyl acetate-soluble fraction of the Oryza sativa cv. Heugnambyeo bran, and were determined to exert significant inhibitory effects in macrophage cell line (murine RAW 264.7) and murine splenocytes. The structures were elucidated on the basis of spectroscopic evidence, particularly the results obtained via hetero nuclear multiple-bond connectivity and high-resolution MS spectroscopy. Up to date, compound (1) was isolated as natural sources for the first time.

Effect of Steroid Hormones and Intracellular $Ca^{++}$ on Taurine Transporter Activity in Murine Macrophage Cell Line (마우스 대식세포에서 스테로이드 호르몬과 세포내 $Ca^{++}$ 타우린수송체의 활성에 미치는 영향)

  • 김하원;안혜숙;이선민;이은진;현진원;박건구;박태선;김병각
    • Biomolecules & Therapeutics
    • /
    • v.9 no.1
    • /
    • pp.40-45
    • /
    • 2001
  • The activity of taurine transporter is affected by various extracellular stimuli such as ion, hormone and stress. To assess effects of steroid hormones antral cyclosporin A (CsA) on the taurine transporter activity, murine monocytic RAW264.7 cell line was stimulated with dexamethasone (DM), triamcinolone (TA), cortisone (CS), hydrocortisone (HCS), prednisone (PSN), prednisolone (PSL) and methylprednisolone (MPSL) in the presence of 12-0-tetradecanoylphorbol-13-acetate(TPA). Treatment of TPA on the cell line led to significant reduction of taurine transporter activity. However, in case of stimulation of the cells with steroid hormones in the presence of TPA, all of them recovered TPA-induced reduction of the taurine transporter activity. Treatment of the cells with CsA led to significant reduction of the taurine transporter activity. Ionomycin (IM) recovered the reduced taurine transporter activity by CsA, but failed in the presence of EDTA, a calcium chelating agent. These results showed that glucocorticoid hormone recovered TPA-induced reduction of taurine transporter activity and that IM recovered CsA-induced reduction of the transporter activity by increasing intracellular free $Ca^{++}$ concentration.n.

  • PDF

Isolation and Characterization of an Immunopotentiating Factor from Lactobacillus plantarum in Kimchi: Assessment of Immunostimulatory Activities

  • Lee, Jong-Hwa;Kweon, Dae-Hyuk;Lee, Seung-Cheol
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.877-883
    • /
    • 2006
  • The immunostimulatory activities of Lactobacillus plantarum, the major microorganism in kimchi fermentations were investigated. Five strains of L. plantarum exhibited weak immunopotentiating activity, but L. plantarum PS-21 showed as strong a mitogenic activity as Bifidobacterium adolescentis M101-4, a known positive strain. It is of interest that, L. plantarum PS-21 stimulated proliferation of Peyer's patch cells, one of the most important tissues in the gut-associated lymphoreticular system. Cell' wall fractions from L. plantarum PS-21 also showed strong mitogenic activity compared with the soluble cytoplasmic fraction. A peptidoglycan fraction (PG) extracted from the cell wall of L. plantarum PS-21 was identified as an active mitogenic component when used in murine lymph node and spleen cell test systems. PG showed dose-dependent mitogenic activity and significantly enhanced antibody production in lymph node cells when studied in vitro. The lysosomal enzyme activity of murine peritoneal macrophages was increased when analyzed following injection of PG to the host animal. Furthermore, PG enhanced the production of cytokines such ($TNF-{\alpha}$ and IL-6) in the in vitro culture of RAW 264.7 macrophage cells.

Effects of Leptin on Osteoclast Generation and Activity

  • Ko, Seon-Yle;Cho, Sang-Rae;Kim, Se-Won;Kim, Jung-Keun
    • International Journal of Oral Biology
    • /
    • v.30 no.2
    • /
    • pp.47-57
    • /
    • 2005
  • Leptin, the product of the obese gene, is a circulating hormone secreted primarily from adipocytes. Several results suggest that leptin is important mediators of bone metabolism. The present study was undertaken to determine the effects of leptin on anti-osteoclastogenesis using murine precursors cultured on Ca-P coated plates and on the production of osteoprotegerin (OPG) in osteoblastic cells. Additionally, this study examined the possible involvement of prostaglandin $E_2\;(PGE_2)$/protein kinase C (PKC)-mediated signals on the effect of leptin on anti-osteoclastogenesis to various culture systems of osteoclast precursors. Osteoclast generation was determined by counting tartrate-resistant acid phosphatase positive [TRAP (+)] multinucleated cells (MNCs). Osteoclastic activity was determined by measuring area of resorption pits formed by osteoclasts on Ca-P coated plate. The number of 1,25-dihydroxycholecalciferol $(1,25[OH]_2D_3)$- or $PGE_2$-induced TRAP (+) MNCs in the mouse bone marrow cell culture decreased significantly after treatment with leptin. The number of receptor activator of NF-kB ligand (RANKL)-induced TRAP (+) MNCs in M-CSF dependent bone marrow macrophage (MDBM) cell or RAW264.7 cell culture decreased significantly with leptin treatment. Indomethacin inhibited osteoclast generation induced by $1,25[OH]_2D_3$ and dexamethasone, however, no significant differences were found in the leptin treated group when compared to the corresponding indomethacin group. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, inhibited osteoclast generation induced by $1,25[OH]_2D_3$. The number of TRAP (+) MNCs decreased significantly with treatment by PMA at concentrations of 0.01 and $0.1{\mu}M$ in culture. Leptin inhibited PMA-mediated osteoclast generation. Isoquinoline-5-sulfonic 2-methyl-1-piperazide dihydrochloride (H7) had no effect on osteoclast generation induced by $1,25[OH]_2D_3$. Cell culture treatment with leptin resulted in no significant differences in osteoclast generation compared to the corresponding H7 group. Indomethacin showed no significant effect on TRAP (+) MNCs formation from the RAW264.7 cell line. PMA inhibited TRAP (+) MNCs formation induced by RANKL in the RAW264.7 cell culture. H7 had no effect on osteoclast generation from the RAW264.7 cell line. There was no difference compared with the corresponding control group after treatment with leptin. $1,25[OH]_2D_3$- or $PGE_2$-induced osteoclastic activity decreased significantly with leptin treatment at a concentration of 100 ng/ml in mouse bone marrow cell culture. Indomethacin, PMA, and H7 significantly inhibited osteoclastic activity induced by $1,25[OH]_2D_3$ in mouse bone marrow cell culture. No significant differences were found between the leptin treated group and the corresponding control group. The secretion of OPG, a substance known to inhibit osteoclast formation, was detected from the osteoblasts. Treatment by leptin resulted in significant increases in OPG secretion by osteoblastic cells. Taken these results, leptin may be an important regulatory cytokines within the bone marrow microenvironment.

Mode of Action of Coptidis Rhizoma Protein (CRP) and Its Activity Against Subcutaneous Candidiasis due to Candida albicans (황련단백질의 항캔디다 작용기전 및 항피부캔디다증 효과)

  • Lee, Jue-Hee;Shim, Jin Kie;Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.49 no.5
    • /
    • pp.422-427
    • /
    • 2005
  • Our previous data showed the protein isolated from Coptidis Rhizoma (CRP) had antifungal activity. In present study, we examined mode of action of the CRP and its activity against subcutaneous candidiasis due to C. albicans yeast cells. Results showed that the CRP blocked hyphal production from yeast form of C. albicans. The CRP also activated RAW 264.7 monocyte/macrophage cell line, which resulted in nitiric oxide (NO) production from the cells. This activation seemed to increase macrophage phagocytosis to destroy the invaders. Like other antimicrobial peptides, CRP was influenced by ionic strength, thus resulting in a decrease of antifungal activity. In murine model of a subcutaneous candidiasis, the sizes of infected areas of the nude mice given the CRP after subcutaneous injection of C. albicans yeast cells to the dorsal skin were $90\%$ less than those of the nude mice groups that received DPBS instead of the CRP. All data indicate that the CRP, which appeared to act like an antimicrobial peptide and to inhibit the morphological transition from blastoconidia, was effec­tive against the subcutaneous disease.

Anti-cancer and Anti-inflammatory Effects of Mung Bean and Soybean Extracts (녹두 및 대두추출물의 항암 및 항염증 활성)

  • Imm, Jee-Young;Kim, Seok-Joong
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.755-761
    • /
    • 2010
  • The quinone reductase (QR) inducing activities of mung bean and soybean solvent extracts were compared using murine hepatoma cells (Hepa 1c1c7). The mung bean extracts (ethylacetate and ethanol) showed higher chemoprevention index values (7.88-8.22) than those of soybean extracts (2.9-5.2) from four different cultivars. The mung bean extracts also had significantly higher inhibitory effects (47-62% at 100 ${\mu}g$/mL) than the soybean extracts (15-42% at 100 ${\mu}g$/mL) against the production of nitric oxide and prostaglandin E2 in lipopolysccharide stimulated macrophage RAW264.7 cells without cytotoxicity. Among seven recovered fractions of mung bean ethanol extract obtained by C 18 silica flash column chromatography, the most non-polar fraction exhibited the highest chemoprevention index of 10.4.

Antiinflammatory Effect of Aqueous Extract from Red Pepper on Lipopolysaccharide Induced Inflammatory Responses in Murine Macrophages (홍고추가루 수용성 추출물의 항염증 효과)

  • Kwon, Hyuck-Se;Shin, Hyun-Kyung;Kwon, Sang-O;Yeo, Kyung-Mok;Kim, Sang-Moo;Kim, Bok-Nam;Kim, Jin-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.10
    • /
    • pp.1289-1294
    • /
    • 2009
  • Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit antiinflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Red pepper is the most consumed species in Korea. However, the antiinflammatory effects of red pepper have not been characterized. Thus, the present study was designed to evaluate the effects of the aqueous extract from red pepper (RPAE) on lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages. RPAE demonstrated strong antiinflammatory activity through its ability to reduce nitric oxide and prostaglandin $E_2$ production in the LPS-stimulated mouse macrophage cell, RAW264.7. It also inhibited the production of interleukin-6 (IL-6) on the LPS-stimulated RAW264.7 cells. Further study indicated that LPS-stimulated induction of inducible nitric oxide synthase and cyclooxygenase-2 was significantly inhibited by RPAE exposure (1,000 mg/mL) in RAW264.7 cells. Collectively, these data suggest that the use of RPAE may be a useful therapeutic approach to various inflammatory diseases.

Anti-Inflammatory Effect of Licochalcone E, a Constituent of Licorice, on Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophages (Licochalcone E의 항염증 효과와 그 기전에 대한 연구)

  • Park, Geun-Mook;Jun, Jong-Gab;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.656-663
    • /
    • 2011
  • Licochalcone, a major phenolic constituent of the licorice species Glycyrrhiza inflata, a constituent of licorice, exhibits various biological properties, including chemopreventive-, antibacterial-, and anti-spasmodic activities. Recently, Licochalcone E (LicE) was isolated from the roots of Glycyrrhiza inflate, however its biological functions have not been fully examined. In the present study, we investigated the ability of LicE to regulate inflammation reactions in macrophages. Our in vitro experiments using murine macrophages, RAW264.7 cells, showed that LicE suppressed not only nitric oxide (NO) and prostaglandin $E_2$ generation, but also the expression of inducible NO synthase and cyclooxygenase-2 induced by lipopolysaccharide (LPS). Similarly, LicE inhibited the release of proinflammatory cytokines induced by LPS in RAW264.7 cells, including tumor necrosis factor-${\alpha}$ and interleukin-6. The underlying mechanism of LicE on anti-inflammatory action correlated with down-regulation of the nuclear factor-${\kappa}$B. Our data collectively indicate that LicE inhibited the production of several inflammatory mediators and might be used in the treatment of various inflammatory diseases.

Acetyl Eburicoic Acid from Laetiporus sulphureus var. miniatus Suppresses Inflammation in Murine Macrophage RAW 264.7 Cells

  • Saba, Evelyn;Son, Youngmin;Jeon, Bo Ra;Kim, Seong-Eun;Lee, In-Kyoung;Yun, Bong-Sik;Rhee, Man Hee
    • Mycobiology
    • /
    • v.43 no.2
    • /
    • pp.131-136
    • /
    • 2015
  • The basidiomycete Laetiporus sulphureus var. miniatus belongs to the Aphyllophorales, Polyporaceae, and grows on the needleleaf tree. The fruiting bodies of Laetiporus species are known to produce N-methylated tyramine derivatives, polysaccharides, and various lanostane triterpenoids. As part of our ongoing effort to discover biologically active compounds from wood-rotting fungi, an anti-inflammatory triterpene, LSM-H7, has been isolated from the fruiting body of L. sulphureus var. miniatus and identified as acetyl eburicoic acid. LSM-H7 dose-dependently inhibited the NO production in RAW 264.7 cells without any cytotoxicity at the tested concentrations. Furthermore it suppressed the production of proinflammatory cytokines, mainly inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor ${\alpha}$, when compared with glyceraldehyde 3-phosphate dehydrogenase. These data suggest that LSM-H7 is a crucial component for the anti-inflammatory activity of L. sulphureus var. miniatus.