The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.12
/
pp.2363-2371
/
2015
In this paper, we propose a new feature matching algorithm which is robust to the viewpoint change by using the FAST(Features from Accelerated Segment Test) feature detector and the SIFT(Scale Invariant Feature Transform) feature descriptor. The original FAST algorithm unnecessarily results in many feature points along the edges in the image. To solve this problem, we apply the principal curvatures for refining it. We use the SIFT descriptor to describe the extracted feature points and calculate the homography matrix through the RANSAC(RANdom SAmple Consensus) with the matching pairs obtained from the two different viewpoint images. To make feature matching robust to the viewpoint change, we classify the matching pairs by calculating the Euclidean distance between the transformed coordinates by the homography transformation with feature points in the reference image and the coordinates of the feature points in the different viewpoint image. Through the experimental results, it is shown that the proposed algorithm has better performance than the conventional feature matching algorithms even though it has much less computational load.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.3
/
pp.630-638
/
2016
In this paper, a feature based panorama image generation algorithm using FAST(Features from Accelerated Segment Test) method that is faster than SIFT(Scale Invariant Feature Transform) and SURF(Speeded Up Robust Features) is proposed. Cylindrical projection is performed to generate natural panorama images with numerous images as input. The occurred error can be minimized by applying RANSAC(Random Sample Consensus) for the matching process. When we synthesize numerous images acquired from different camera angles, we use blending techniques to compensate the distortions by the heterogeneity of border line. In that way, we could get more natural synthesized panorama image. The proposed algorithm can generate natural panorama images regardless the order of input images and tilted images. In addition, the image matching can be faster than the conventional method. As a result of the experiments, distortion was corrected and natural panorama image was generated.
Stitching algorithm obtain a descriptor of the feature points extracted from multiple images, and create a single image through the matching process between the each of the feature points. In this paper, a feature extraction and matching techniques for the creation of a high-speed panorama using video input is proposed. Features from Accelerated Segment Test(FAST) is used for the feature extraction at high speed. A new feature point matching process, different from the conventional method is proposed. In the matching process, by tracking region containing the feature point through the Mean shift vector required for matching is obtained. Obtained vector is used to match the extracted feature points. In order to remove the outlier, the RANdom Sample Consensus(RANSAC) method is used. By obtaining a homography transformation matrix of the two input images, a single panoramic image is generated. Through experimental results, we show that the proposed algorithm improve of speed panoramic image generation compared to than the existing method.
Journal of the Institute of Convergence Signal Processing
/
v.11
no.4
/
pp.345-353
/
2010
A general solution in global self-position location of robot is to generate multiple hypothesis in self-position of robot, which is to look for the most positive self-position by evaluating each hypothesis based on features of observed landmark. Markov Localization(ML) or Monte Carlo Localization(MCL) to be the existing typical method is to evaluate all pairs of landmark features and generated hypotheses, it can be said to be an optimal method in sufficiently calculating resources. But calculating quantities was proportional to the number of pairs to evaluate in general, so calculating quantities was piled up in wide environments in the presence of multiple pairs if using these methods. First of all, the positive and promising pairs is located and evaluated to solve this problem in this paper, and the newly locating method to make effective use of calculating time is proposed. As the basic method, it is used both RANSAC(RANdom SAmple Consensus) algorithm and preemption scheme to be efficiency method of RANSAC algorithm. The calculating quantity on each observation of robot can be suppressed below a certain values in the proposed method, and the high location performance can be determined by an experimental on verification.
IEMEK Journal of Embedded Systems and Applications
/
v.11
no.3
/
pp.163-171
/
2016
Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.25
no.6_1
/
pp.529-536
/
2007
Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.103-107
/
2013
In this paper, A real-time lane tracking algorithm is proposed for lane departure warning system. To eliminate perspective effect, input image is converted into Bird's View by inverse perspective mapping. Next, suitable features are extracted for lane detection. Lane feature that correspond to area of interest and RANSAC are used to detect lane candidates. And driving lane is decided by clustering of lane candidates. Finally, detected lane is tracked using the Kalman filter. Experimental results show that the proposed algorithm can be processed within 30ms and its detection rate is approximately 90% on the highway in a variety of environments such as day and night.
This paper presents an image registration using Triangulation-based Local Transformation (TLT) applied to the remaining matched points after elimination of the matched points with gross error. The corners extracted using geometric mean-based corner detector are matched using Pearson's correlation coefficient and then accepted as initial matched points only when they satisfy the Left-Right Consistency (LRC) check. We finally accept the remaining matched points whose RANdom SAmple Consensus (RANSAC)-based global transformation (RGT) errors are smaller than a predefined outlier threshold. After Delaunay triangulated irregular networks (TINs) are created using the final matched points on reference and sensed images, respectively, affine transformation is applied to every corresponding triangle and then all the inner pixels of the triangles on the sensed image are transformed to the reference image coordinate. The proposed algorithm was tested using KOMPSAT-2 images and the results showed higher image registration accuracy than the RANSAC-based global transformation.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.29
no.5
/
pp.449-457
/
2011
As automated image processing techniques have been required in multi-temporal/multi-sensor geospatial image applications, use of automated but highly invariant image matching technique has been a critical ingredient. Note that there is high possibility of geometric and spectral differences between multi-temporal/multi-sensor geospatial images due to differences in sensor, acquisition geometry, season, and weather, etc. Among many image matching techniques, the SIFT (Scale Invariant Feature Transform) is a popular method since it has been recognized to be very robust to diverse imaging conditions. Therefore, the SIFT has high potential for the geospatial image processing. This paper presents a performance test results of the SIFT on geospatial imagery by simulating various image differences such as shear, scale, rotation, intensity, noise, and spectral differences. Since a geospatial image application often requires a number of good matching points over the images, the number of matching points was analyzed with its matching positional accuracy. The test results show that the SIFT is highly invariant but could not overcome significant image differences. In addition, it guarantees no outlier-free matching such that it is highly recommended to use outlier removal techniques such as RANSAC (RANdom SAmple Consensus).
Kim, Hyun-Suk;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
Proceedings of the KSRS Conference
/
2007.03a
/
pp.70-75
/
2007
2008년 12월에 우리나라 최초의 통신해양기상위성(Communications, Oceanography and Meteorology Satellite, COMS)이 발사될 예정이다. 통신해양기상위성의 영상데이터의 기하보정을 위하여 다음과 같은 연구를 수행하였다. 기상위성은 정지궤도상에 위치하여 전지구적인 영상을 얻는다. 영상의 전지구적인 해안선은 구름 등으로 가려져서 명확한 정보를 제공할 수 없게 된다. 구름 등으로 방해되지 않는 명확한 해안선 정보를 얻기 위하여 구름 추출을 한다. 실시간으로 기상정보를 얻는 기상위성의 특성상 정합에 전체 영상을 사용하면 수행시간이 다소 소요된다. 정합시 전체 영상에서 정합을 위한 후보점 추출을 위하여 GSHHS(Global Self-consistent Hierarchical High-resolution Shoreline)의 해안선 데이터베이스를 사용하여 211 개 의 랜드마크 칩들을 구축하였다. 이때 구축된 랜드마크 칩은 실험에 사용한 GOES-9의 위치 동경 155도를 반영하여 구축하였다. 전체 영상에서 구축된 랜드마크 칩들의 위치를 중심으로 구름추출을 수행한다. 전체 211 개의 후보점 중 구름이 제거된 나머지 후보점에 대하여 정합을 수행한다. 랜드마크 칩과 위성영상 간의 정합 중 참정합과 오정합이 존재하는데 자동으로 오정합을 검출하기 위하여 강인추정기법 (RANSAC, Random Sample Consensus)을 사용한다. 이때 자동으로 판별되어 오정합이 제거된 정합결과로 최종적인 기하보정을 수행한다. 기하보정을 위한 센서모델은 GOES-9 위성의 센서특정을 고려하여 개발되었다. 정합 및 RANSAC결과로 얻어진 기준점으로 정밀 센서모델을 수립하여 기하보정을 실시하였다. 이때 일련의 수행과정을 통신해양기상위성의 실시간 처리요구사항에 맞도록 속도를 최적화하여 진행되도록 개발하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.