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A Performance Analysis of the SIFT Matching on
Simulated Geospatial Image Differences

공간 상 처리를 위한 SIFT 매칭 기법의 성능 분석
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Abstract

As automated image processing techniques have been required in multi-temporal/multi-sensor geospatial image
applications, use of automated but highly invariant image matching technique has been a critical ingredient. Note that
there is high possibility of geometric and spectral differences between multi-temporal/multi-sensor geospatial images
due to differences in sensor, acquisition geometry, season, and weather, etc. Among many image matching techniques,
the SIFT (Scale Invariant Feature Transform) is a popular method since it has been recognized to be very robust to
diverse imaging conditions. Therefore, the SIFT has high potential for the geospatial image processing. This paper pre-
sents a performance test results of the SIFT on geospatial imagery by simulating various image differences such as
shear, scale, rotation, intensity, noise, and spectral differences. Since a geospatial image application often requires a
number of good matching points over the images, the number of matching points was analyzed with its matching posi-
tional accuracy. The test results show that the SIFT is highly invariant but could not overcome significant image differ-
ences. In addition, it guarantees no outlier-free matching such that it is highly recommended to use outlier removal
techniques such as RANSAC (RANdom SAmple Consensus).
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1. Introduction 

Image matching is to automatically extract conjugate image

points from an overlapping image pair such as a stereo image

pair or a multi-temporal image pair. Image matching is a criti-

cal process for various image applications such as identifying

same features from multiple looking images, change detec-

tion, feature tracking, and image alignment. In the geospatial

image processing, image matching is used for DEM (Digital

Elevation Model) generation from stereo images (Maas, 1996;

Zhang and Gruen, 2006) and image-to-image matching based

automated georegistration (Chen and Arora, 2003; Wong and

Clausi, 2007; Cariou and Chehdi, 2008; Oh et al., 2010).

Image matching techniques can be classified into the area-

based, the feature-based, and the hybrid method (Wolf and

Dewitt, 2000). The area-based methods perform the matching

by comparing pixel values from each image. The normalized

cross correlation matching technique is a well-known area-

based matching, and it is the most common method which is

adopted in many photogrammetry systems. The least square

matching is also one of the area-based matching but it is

invariant to intensity change and affine deformations. The fea-

ture-based matching techniques are relatively new and have

been developing in the computer science field, and it is more

complicated and uses feature characteristics such as size and

shape. The hybrid methods involve the combination of both

approaches. 

A matching task typically has two steps, i.e., extraction of

distinct points (or features) from one image, and the search for

the counterpart in the corresponding image. The critical factor



that affects the quality of image matching is the similarity

between the two images in addition to image quality. In the

geospatial image processing, the paired images often have dif-

ferent geometry and different spectral information as they are

obtained in different environments i.e. different acquisition

times, angles, and different sensors. Therefore, robust match-

ing techniques should be used to account for the large imag-

ing condition difference between the multi-temporal/multi-

sensor geospatial image pair. 

In the field of computer vision, the SIFT (Scale Invariant

Feature Transform, Lowe, 1999) is popularly used because it

has been recognized to be very reliable and invariant to imag-

ing condition changes such as scale, rotation, affine distortion

and intensity changes. There are also some modifications to

SIFT to make it more effective: PCA-SIFT (Ke and

Sukthankar, 2004), GLOH (Gradient Location-Orientation

Histogram) (Mikolajczyk and Schmid, 2005), CSIFT (Abdel-

Hakim and Farag, 2006), SR-SIFT (Yi et al., 2008), SURF

(Speeded-Up Robust Features) (Bay et al., 2008) and Robust

SIFT (Li et al., 2009), though, they are conceptually similar.

Even though the SIFT is popularly used in the computer

vision application, characteristics and positional accuracy of

the SIFT should be analyzed first for geospatial images.

Therefore, in this paper, the SIFT was tested based on simula-

tion for various geospatial image conditions such as shear dis-

tortion, scale, rotation, noise, intensity, and spectra difference.

Then matching positional accuracy was checked using the

known image transform because the positional accuracy of

matching is very important in geospatial image processing

contrast to generic computer vision applications.

This paper is structured as follows: in section 2, the SIFT

algorithm and concept are briefly described and section 3 pre-

sents analysis on the SIFT performance and matching posi-

tional accuracy for various simulated geospatial image condi-

tions, followed by the summary and conclusion in section 4.

2.  SIFT (Scale Invariant Feature
Transform)

Scale Invariant Feature Transform (SIFT) matching is

designed to extract invariant features from images and to per-

form matching. For effective image matching, the features

should be invariant to scale, rotation, affine distortion and

intensity changes. The brief summary of the SIFT feature

extraction algorithm is written and paraphrased in the below

based on the authors’ understanding; refer to (Lowe, 2004) for

more detail.

2.1 Scale-space extrema detection
At this stage, keypoints are extracted using difference of

Gaussian filters (DoG) at different image scale. Features

invariant to image scale change are searched using different

image scales as shown in Fig. 1. At the first octave, Gaussian

blur shown in Eq.(1) is used to generate a set of scaled

images, then DoG images are obtained. By down-sampling

the first octave image by a factor of two, the next octave

image is obtained and the same procedure is repeated.

(1)

Where is the standard deviation of the Gaussian distrib-

ution, is the scale space of an image, blurred with

, is the Gaussian at the standard deviation ,

is the input image, and * is the convolution operator. 

The difference of the Gaussian-blurred images, generated

using and , is simply expressed as Eq.(2).

(2)

Where is a constant multiplicative factor for DoG.
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Fig. 1. The Gaussian-blurred (scaled) images at the first octave
shown in the left-bottom, and difference of Gaussian (DoG) images

are in the right. Using down-sampling by factor of two, the next
octave is obtained (Lowe, 2004).
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After DoG images across image scales are generated, as

shown in the right-bottom of Fig. 1, keypoints are located by

comparing each sample point to its eight neighboring pixels at

the same scale, and to nine neighbors in the scales above and

below (total 26 neighbors), as shown in Fig. 2. In the figure,

the point marked with ‘X’ is a sample point, and it is com-

pared to the neighbors (marked with circles). If the sample

point is the local minimum or the local maximum of the

neighborhood, it is selected as a keypoint.

2.2 Keypoint localization
The next step is to remove keypoints with low contrast or

poorly localized along the edges. At the initial implementation

of SIFT, the location and scale of keypoints obtained in the

previous step were used as directly obtained at that step. Later,

more accurate localization was performed by fitting a 3D qua-

dratic function to the keypoints to determine the interpolated

location of the maximum (Lowe, 2004).

The keypoint with low contrast can be removed using the

value of . Lowe (2004) used 0.03 as the threshold

for . Removing keypoints poorly localized along

the edges can be done using the 2 x 2 Hessian matrix,

obtained by taking second derivatives of D as shown in

Eq.(3). Then, the keypoints not satisfying Eq. (4) are

removed.

(3)

With , det(H)= , and =r

Where , are the eigenvalues and r is the ratio between

the eigenvalues.

(4)

2.3 Orientation assignment
For the next step, each keypoint needs to be assigned an

orientation. Magnitude and orientation can be computed using

pixel difference of neighbors, as shown in Eqs.(5) and (6),

respectively. To determine the orientation, an orientation his-

togram, which has 35 bins for 360 deg orientation range, is

formed around the keypoint. And then, each neighboring

pixel is weighted by the gradient magnitude and a Gaussian

window with that is 1.5 times the scale of the key points.

In the histogram, peaks correspond to dominant orientations.

Multiple keypoints are created for the direction to the his-

togram peak and any others within the 80% of highest peaks.

(5)

(6)

Where m(x, y) is a magnitude, (x, y) is an orientation, and

L(x, y) is a scale space of an image at the scale of the keypoint.

2.3 Generation of keypoint
descriptors

After orientation is assigned to a keypoint, the keypoint

descriptor is computed as a set of orientation histogram in 4×4

pixel neighborhoods. Gradient magnitude and orientation of

each sample point around the keypoint are computed and

weighted by a Gaussian window. Then, the information is

accumulated into the orientation histogram of 4×4 subre-

gions. Each histogram has 8 bins and each descriptor has an

Fig. 2. Maximum and minimum of the DoG images are detected by
comparing a pixel (marked with X) to its 26 neighbors in 3x3

regions at the current and adjacent scales (marked with circles)
(Lowe, 2004).

Fig. 3. Generation of keypoint descriptors (Lowe, 2004).



array of 4×4 histograms around the keypoint. This leads to a

feature vector with 4×4×8=128 elements. This descriptor is

shown in Fig. 3. Note that the descriptor in Fig. 3 has an array

of 2×2 histograms around the keypoint. Conventionally the

feature vector of 128 elements is normalized and used for

SIFT matching.

2.4 SIFT matching
SIFT feature matching is performed by comparing each

keypoint descriptor from one image to all the key point

descriptors from the counterpart image. In other words, the

matching counterpart is determined when the most similar

feature vector is found. Similarity can be obtained by comput-

ing a dot product of two feature vectors, e.g. if two features

are same, their similarity will be one. One concern is that if a

feature vector is the most similar, it does not mean it is a cor-

rect matching point. Therefore, SIFT uses a threshold to filter

out similar but wrong matching points. SIFT utilizes the ratio

of the maximum similarity to the second similarity to obtain

only matching points with outstanding similarity.

3. SIFT performance analysis

SIFT matching performance is analyzed for simulated

image differences such as shear distortion, scale, rotation,

noise, intensity, and spectral difference. Fig. 4 depicts the

flowchart of the SIFT matching based on simulation. From a

test image, three images are subset which geometric and spec-

tral distortion are simulated to. Then the SIFT matching was

carried out between the test image and simulated images. For

the experiment, three test images, shown in Fig. 5(b), which

represent building, residential, and flat areas, are subsets from

an aerial hyperspectral image shown in Fig. 5(a), and the sim-

ulated image differences are applied to those sub-images

shown in Fig. 5(c). The analysis was carried out for the SIFT

matching between the simulated images shown in Fig. 5(c)

and the original images shown in Fig. 5(a). The geometric

image differences between the original and simulated images

are modeled using the affine transform Eq.(7), with any com-

binations of Eqs.(8),(9), and (10). 

(7)

Where is an affine transformation matrix, , are the

image coordinates in the original image, and , are the

image coordinates of the simulated (distorted) image.

(8)

Where is the shear parameter.

(9)

Where , are the scale parameters in and direc-

tions, respectively.
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Fig. 4. Simulation and SIFT matching flow chart.

Fig. 5. Test images, CASI-1500 (Courtesy of ITRES Research) 
(a) full scene (b) subset scenes, each 300•™300 pixels (c) simulated

images using scale difference of 0.8, shear of 0.2, rotation by 45 deg and
noise at 1%.



(10)

Where is the rotation angle.

3.1 Shear distortion
With changing shear parameter α, the number of matching

points of SIFT matching is counted and plotted in Fig. 6(a).

Note that shear distortion including the affine is common dis-

tortion which often appears in the aerial images and satellite

images due to camera orientation. The figure shows that as

shear distortion αincreases, the number of matching points

significantly decrease, meaning that SIFT matching does not

overcome significant shear distortion. The test images of

buildings and residential area show more matching points are

obtained than the image of a flat area. Note that the building

and residential images contain more distinct features than the

flat area image and they produce large number of corner

points in the keypoint localization step of SIFT. Next, the

image matching positional accuracy was investigated since

the correct position of the counterpart points is known from

the distortion parameter. The matching errors within the five

pixels are plotted in Fig. 6(b)(c) and the image points with

errors larger than five pixels are marked as outliers and count-

ed. The number of outliers out of the total number of match-

ing points is also presented at the caption of each figure. Fig. 6

demonstrates that with increasing shear distortion, the overall

positional accuracy tends to decrease. Ideally, the matching

error should be zero for the no-distortion case, but the test

showed that the errors for some matching points are not zero.

The likely reason is due to the scale-space approach of SIFT;

i.e., different octave requires down-sample image resampling

which might affect accurate localization of keypoints.

Similarly, zero error is not obtained when an image is

matched to a subset of itself. At shear of 0.0~0.4, no outliers

were observed; for shear of 0.6, two outlier matching points

were observed.

3.2 Scale difference
Geospatial images such as aerial images and satellite

images often have different image scales, i.e. resolution,

depending on camera focal length and altitude; therefore,

image matching should be highly invariant to scale. In the

test, the scale ratio of one is for the same scales of both

images and smaller scale parameters mean larger scale differ-

ence. Obviously, smaller scale parameters (larger scale differ-

ence) should produce fewer matching points because the size

of the scaled image is reduced, i.e. the total number of image

pixels is reduced. Therefore, the effect of image scale differ-

ence cannot be investigated based on the number of the

matching points. Thus, only the positional accuracy was test-

ed for the scale difference as shown in Fig. 7, the small scale

difference tends to insignificantly affect the accuracy while

few inaccurate and outlier points are observed in large scale

differences such as in the scale ratio of 0.2. Note that the posi-

tional accuracy was computed in the reference image scale

(full scene). The SIFT matching seems highly invariant to the

scale difference. 
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(a) (b) shear 0.4: outliers= 0/76 (c) shear 0.6: outliers= 2/19

Fig. 6. SIFT invariance and positional accuracy as a function of shear distortions
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3.3 Image rotation
Fig. 8(a) presents the number of matching points as a func-

tion of varying image rotation. Note that aerial images often

have different rotation (orientation) with respect to the refer-

ence image due to the flight direction. In Fig. 8(a), it is

observed that the same number of matching points is acquired

when rotating the image by 90 and 180 deg. The probable rea-

son that 45 and 135 deg rotations provide different results is

that 45 and 135 deg rotations require interpolation of pixel

values such as cubic convolution, which often result in slight-

ly different pixel values in the output image than the original

image. In contrast, 90 and 180 deg rotations do not require the

interpolation. In the matching positional accuracy test shown

in Fig. 8(b)(c), there were no matching points showing signifi-

cantly low accuracy. In other words, SIFT matching has good

invariance to image rotations.

3.4 Noise
Fig. 9(a) presents the SIFT matching results for ‘salt and

pepper’ image noise, which is also called impulse noise. This

unwanted noise corrupts an image by randomly appearing as

white and black dots superimposed on the image. It is also

introduced to the aerial and satellite images due to a noisy

channel, errors during the measurement process and during

quantization of the data for digital storage (Chahal and Singh,

(a) scale 0.8: outliers= 0/264 (b) scale 0.2: outliers= 1/15

Fig. 7. SIFT positional accuracy as a function of scale difference.

(a) (b) rotation 45 deg: outliers= 0/231 (c) rotation 90 deg: outliers= 0/424

Fig. 8. SIFT invariance and positional accuracy as a function of image rotations.

(a) (b) noise: 2 %: outliers= 0/249 (c) noise 4 %: outliers= 0/143

Fig. 9. SIFT invariance and positional accuracy a function of salt & pepper noises.



2010). Therefore, the image matching should be robust to this

phenomenon too. In Fig. 9(a), it is observed that the number

of matching points significantly decreases for the images with

significant noise. Fig. 9(b)(c) show that the matching position-

al accuracy only slightly degrades, as the noise increases. In

other words, the noise does not have much impact on the

SIFT matching accuracy.

3.5 Intensity difference
The intensity in aerial images and satellite images can be

different depending on the image acquisition time, season,

and weather. Therefore, invariance to intensity change is also

required for robust image matching. Fig. 10(a) shows the

number of matching points from the SIFT matching as a func-

tion of intensity differences, which was simulated using the

power-law equation (Gonzalez and Woods, 2001). Note that

gamma is the coefficient in the power-law equation. Gamma

of 1 represents no intensity difference and smaller gamma

tends to produce the brighter image from an input image. Fig.

10(a) shows that the number of matching points decreases as

the image intensity difference increases. Matching positional

accuracy slightly degrades as the intensity difference increases

in Fig. 10(b)(c). The test result indicates that SIFT is highly

invariant to the intensity differences.

3.6 Spectral difference
Current trend in aerial and satellite sensors is to provide

multispectral information, not only the high-resolution

panchromatic image; for example, WorldView-2 satellite

(DigitalGlobe) has eight spectral bands. Also, hyperspectral

images such as CASI-1500 by ITRES are gaining more inter-

est. Therefore, image matching across the spectral bands will

be required in many applications. Fig. 11 shows the result

when SIFT matching is performed between the spectral band

14 (878 nanometers wavelength, near-infrared) and bands 1-

18 (385~1030 nanometers wavelength) of the test image. The

figure clearly shows that the SIFT matching between visible

spectrum and near-infrared spectrum produces only a few

matching points. Note that the spectral bands from 1 to 10 are

in visible spectrums. In addition, the number of matching

point decreases significantly as the spectral gap increases. The

test results indicate that SIFT cannot handle the large spectral

gap. Therefore, it will be very important to select spectral

bands of similar spectral ranges for redundant image matching

points.
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(a) (b) gamma 0.3: outliers= 0/157 (c) gamma 0.8: outliers= 0/381

Fig. 10. SIFT invariance and positional accuracy a function of intensity differences.

Fig. 11. SIFT invariance test on spectrum difference 
(band 14 vs. the others).



3.7 Need of RANSAC
In the SIFT performance analysis, it was shown that SIFT

matching may produce inaccurate matching points with the

positional accuracy lower than a few pixel level, which can be

significant in the perspective of mapping. In addition, some

outlier matching points were observed as error could directly

propagate to the quality of aerial image georeferencing.

Therefore, these inaccurate matching points should be

removed. RANSAC (Fischler and Bolles, 1981) is a tech-

nique to estimate parameters of a model through iterations

from a set of observations that contain outliers. Model para-

meters are estimated from a randomly selected observation

subset and then every observation is tested if it fits to the

model, and it is added to the consensus set. Through the itera-

tion procedure, a new consensus set is obtained, and a better

model is estimated. RANSAC is useful especially when the

number of outliers is large, where other robust techniques,

such as the least squares residual check or Baarda’s data

snooping (Baarda, 1968) have practical limitations. RANSAC

requires appropriate selection of model to fit data. Depending

on the applications, different model should be selected such as

line and plane equation, homography, fundamental matrix,

and affine model etc.

As a test, affine model-based RANSAC (6 DoF) was

applied to attenuate an inaccurate SIFT matching points for

the shear distortion as shown in Fig. 6. A number of low-posi-

tional-accuracy matching points are observed in Fig. 12(a),

but Fig. 12 (b) shows that RANSAC successfully pruned

inaccurate matching points.

4. Conclusion

As automated image processing techniques have been

required in multi-temporal/multi-sensor geospatial image pro-

cessing such as georegistration, use of automated but highly

invariant image matching technique has been a critical ingre-

dient. SIFT is one of the most popular point feature matching

methods but its characteristics and matching positional accu-

racy has not been investigated for geospatial image of diverse

imaging conditions. This study carried out analysis of the

SIFT matching performance for geospatial imagery as a func-

tion of varying image parameters and conditions such as

shear, scale, rotation, intensity, noise, and spectral differences.

The conclusion derived from the experiment can be summa-

rized as below.

- the SIFT matching can provide acceptable number of

matching points under insignificant image geometric dis-

tortion.

- the noise (salt and pepper) does not have much impact on

the SIFT matching positional accuracy.

- the SIFT matching is highly invariant to scale, rotation

and intensity differences.

- the SIFT matching may produce matching points with

inaccurate positional matching accuracy, which may not

be enough for large-scale mapping.

- the SIFT matching guarantees no outlier-free matching

results.

- the SIFT matching requires extensive post-processing to

secure satisfactory matching positional accuracy.

- the SIFT matching is not invariant to spectral differences,

e.g. matching between visible and infrared bands.

Therefore, it is important to select optimal spectral bands

when matching is carried out between different types of

geospatial imagery

In this study, simulated geometric distortions are limited to

2-dimensional case. For the future study, the effect of relief

displacement of ground features on the image matching needs

to be investigated and more experiments on real data sets are

highly required. In addition, more diverse outlier removal

algorithms need to be investigated for their efficiency and
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(a) before outlier removal (b) after outlier removal

Fig. 12. RANSAC test to attenuate SIFT matching errors from
shear distortion. 



robustness such as MLESAC (Maximum Likelihood

Estimation SAmple and Consensus).

References

Abdel-Hakim, A.E., and Farag, A.A. (2006), CSIFT: A SIFT

Descriptor with Color Invariant Characteristics, In:

Proceedings of the 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition,

Vol. 2, pp. 1978-1983.

Baarda, W. (1968), A testing procedure for use in geodetic

networks, Netherlands Geodetic Commission, Publications

on Geodesy, New Series, Vol. 2, No. 5, Delft.

Bay, H., Ess, A., Tuytelaars, T., and Gool, L.V. (2008),

SURF: Speeded Up Robust Features, Computer Vision and

Image Understanding (CVIU), 110(3): 346-359.

Cariou, C. and Chehdi,K. (2008), Automatic Georeferencing

of Airborne Pushbroom Scanner Images With Missing

Ancillary Data Using Mutual Information, IEEE

Transactions on Geoscience and Remote Sensing, Vol. 46,

No. 5, pp. 1290-1300.

Chahal, G. and Singh H. (2010), Robust Statistics based Filter

to Remove Salt and Pepper Noise in Digital Images,

International Journal of Information Technology and

Knowledge Management, Vol. 2, No. 2, pp. 601-604.

Chen, H.M., Arora, M.K., and Varshney, P.K. (2003), Mutual

Information-Based Image Registration for Remote Sensing

Data, International Journal of Remote Sensing, Vol. 24,

No. 18, pp. 3701-3706.

Fischler, M.A. and Bolles, R.C. (1981), Random Sample

Consensus: A Paradigm for Model Fitting with

Applications to Image Analysis and Automated

Cartography, Communications of the ACM. Vol. 24, pp.

381-395.

Gonzalez, R.C. and Woods, R.E. (2001), Digital image pro-

cessing, second edition, Prentice Hall, New Jersey, pp. 80-

81.

Ke, Y and Sukthankar, R. (2004), PCA-SIFT: A more distinc-

tive representation for local image descriptors, In:

Proceedings International Conferences on Computer

Vision, Washington DC, 2004, pp. 506-513.

Li, Q., Wang, G., Liu, J., and Chen, S. (2009), Robust Scale-

Invariant Feature Matching for Remote Sensing Image

Registration, IEEE Geoscience and Remote Sensing

Letters, Vol. 6, No. 2, pp. 287-291. 

Lowe, D.G. (1999), Object recognition from local scale-

invariant features. In: Proceedings International

Conferences on Computer Vision, Corfu, Greece, pp. 1150-

1157.

Lowe, D.G. (2004), Distinctive Image Features from Scale-

Invariant Keypoints, International Journal of Computer

Vision, Vol. 60, No. 2, pp. 91-110.

Maas, H.G. (1996), Automatic DEM generation by multi-

image feature based matching. Int. Arch. Photogramm.

Remote Sens. Vol. 31 Part B3, pp. 484-489.

Mikolajczyk, K., and Schmid, C. (2005), A performance eval-

uation of local descriptors. IEEE Trans. Pattern Anal.

Mach. Intell., Vol. 27, No. 10, pp. 1615-1630, Oct. 2005.

Oh, J.H., Toth, C.K. and Grejner-Brzezinska, D.A. (2010),

Automatic Geo-referencing of Aerial images using High-

resolution Stereo Satellite Images, ASPRS 2010 Annual

Conference, San Diego, CA, April 26-30.

Wolf, P., and Dewitt, A. (2000), Elements of Photogrammetry

with Applications in GIS, McGraw-Hill.

Wong, A., and Clausi, D.A. (2007), ARRSI: Automatic

Registration of Remote-Sensing Images, IEEE

Transactions on Geoscience and Remote Sensing, Vol. 45,

No. 5, pp. 1483-1493.

Yi, Z., Zhiguo, C. and Yang, X. (2008), Multi-spectral remote

image registration based on SIFT, Electron. Lett., Vol. 44,

No. 2, pp. 107-108.

Zhang, L. and Gruen, A., (2006), Multi-image matching for

DSM generation from IKONOS imagery. ISPRS Journal of

Photogrammetry and Remote Sensing, Vol. 60, No. 3, pp.

195-211.

457

A Performance Analysis of the SIFT Matching on Simulated Geospatial Image Differences

(접수일2011. 08. 03, 심사일2011. 09. 15, 심사완료일2011. 09. 16)


