• Title/Summary/Keyword: RABT fire curve

Search Result 17, Processing Time 0.026 seconds

Fire resistance assessment of high strength segment concrete depending on PET fiber amount under fire curves (화재곡선과 PET섬유 혼입량에 따른 고강도 세그먼트 콘크리트의 화재저항성 평가에 대한 연구)

  • Choi, Soon-Wook;Lee, Gyu-Phil;Chang, Soo-Ho;Park, Young-Taek;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.311-320
    • /
    • 2014
  • High strength concrete is not only vulnerable to the occurrence of spalling which generates the loss of cross-section in concrete structures but produces faster degradation in its mechanical properties than normal strength concrete in the event of fire. This study aims to evaluate fire resistance of high strength segment concrete with PET fibers mixed to prevent spalling under ISO834 (2hr) and RABT fire curve. As results, the samples without PET fibers show the concrete loss up to the depth of about 8 cm and 9.5 cm from the surface exposed to fire under ISO834 and RABT fire curve respectively. The samples mixed with PET fiber of 0.1% show no spalling under ISO834 fire curve and the spalled thickness of 6.5 cm under RABT fire curve after the fire tests. Finally, the sample mixed with PET fiber of 0.2% shows no spalling under RABT fire curve. The results indicate that the suitable amounts of PET fiber for securing fire resistance performance of this high strength segment concrete are 0.1% under ISO834 fire curve and 0.2% under RABT fire curve. However, even though spalling does not occur, it is necessary to repair the deterioration of concrete up to 4 cm from the surface exposed to fire after fire.

Spalling Prevention of High Strength concrete Corresponding to the Various Heating Curves (가열온도곡선 변화에 따른 고강도 콘크리트의 폭렬방지특성)

  • Han, Cheon-Goo;Pei, Chang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.127-134
    • /
    • 2009
  • This study investigated their properties of spalling resistance and residual compressive strength after fire test corresponding to various ISO, RABT heating curves, and contents of hybrid organic fiber of high strength concrete. The results were summarized as following. As fundamental characters of concrete with hybrid organic fiber, the flowability was directly declined as the increase of fiber contents, and air contents were decreased or increased a little bit, but there was not big difference. The compressive strength was gradually declined sluggishly at 28 days. As properties of fire resistance, in case of RABT heating curves, compare with ISO heating curves a spalling aspect showed till range that has much contents of hybrid organic fiber, but they are mostly peeling spalling, which means spalling aspect didn't happen to inside. In conclusion, in case of W/B 25% high strength concrete, the spalling was prevented over 0.04% of contents of fiber at ISO heating curve and over 0.10% of contents of fiber at the RABT heating curve. In case of spalling was prevented, mass reduction rate according to the change of heating temperature curves showed around 7% at ISO heating curves and around 9% at RABT heating curves. The residual compressive strength rate corresponding to the change of heating temperature curves showed 50%~60% at ISO heating temperature curves and 30%~35% at RABT heating temperature curves in case of spalling was prevented.

Evaluation of fire-proofing performance of reinforced concrete tunnel lining coated by newly developed material (신개발 내화재료에 피복된 철근콘크리트 터널라이닝의 내화성능평가)

  • Park, Hae-Genn;Kim, Jang-Ho Jay
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Efficient traffic network is required in urban area for good living condition. However, dense traffic network creates traffic jam and gives bad influences to the ground environment. Therefore, advanced use of underground and tunnel is required. But, in the last 20 years many tunnel fire accidents have occurred all over the world. Increase of tunnels and increase of traffics result in increase of tunnel fire. Tunnel fire creates damage to people and to the tunnel structure. Also, tunnel fire creates a big economical loss. In a mountain tunnel, the stability of the tunnel will not be disturbed by fire although the tunnel lining will get a severe damage. However, in a shield tunnel or immersed tube tunnel, cut and cover tunnel, there is a high possibility that tunnel itself will collapse by fire because their tunnel concrete lining is designed as a structural member. The aim of this experimental research is to verify the fire protection performance of newly developed cementitious material compared with the broadly used existing products in Europe and Japan. For the experiments, the general NATM tunnel concrete linings with the newly developed material were tested using fire loading curve of RABT (Maximum peak temperature is $1,200^{\circ}C$) and RWS (Maximum peak temperature is $1,350^{\circ}C$). From the test results, the newly developed fire protection material applied with 30 mm thickness showed good fire-proofing performance under RABT fire loading.

  • PDF

Fire-induced damage on Shield TBM concrete segment (터널 화재로 인한 콘크리트 세그먼트의 손상특성 규명)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.423-430
    • /
    • 2005
  • Fire accidents in underground space may bring much loss of lives as well as properties and result in catastrophic disasters. This study aimed to manufacture the high-temperature furnace capable of simulating fire scenarios (RABT and RWS) and carry out the preliminary fire tests to evaluate fire-induced damage in underground structures. Specimens used in the fire tests were the concrete segments generally used in shield TBM tunnels. The simulated fire scenario was set to the RABT curve that is the most representative fire scenario in underground space. From the fire tests, the spalling was estimated to reach approximately 20cm from the surface exposed to fire. In addition, from the observation of core specimens obtained after fire tests, the deteriorated zone of unspalled specimens amounted to approximately 10cm from the surface of spalling.

  • PDF

Fire Resistance Performance of Precast Segmental Concrete Lining for Shield Tunnel (쉴드 터널용 프리캐스트 세그먼트 콘크리트 라이닝의 내화성능)

  • Han, Byung-Chan;Harada, kazunori;Kwon, Young-Jin;Kim, Yun Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.95-105
    • /
    • 2014
  • Reinforced concrete (RC) shield tunnel lining must be designed for fireproof performance because the lining is sometimes exposed to very high temperature due to traffic accidents. Both experimental and numerical studies are carried out to evaluate fire resistance performance of precast RC tunnel lining systems. In the experimental studies, six full-scale precast RC tunnel segments are exposed to fire in order to examine the influence of various parameters on the fire resistance performance of precast RC tunnel lining. We used the temperature curve of the RABT criteria, which are severe conditions of fire temperatures. The fire test showed that the explosive spalling was not observed by substituting concrete to PP fiber reinforced concrete. A transient heat flow analysis was carried out in consideration of the material properties that change with temperature, and the results showed good agreement with the test results.

Properties of Fire Resistance in Tunnel Concrete According to the Changes of Heating Curve (온도가열곡선 변화에 따른 콘크리트의 내화특성)

  • Pei, Chang-Chun;Noh, Sang-Kyun;Lee, Chan-Young;Lee, Jong-Suk;Lee, Jang-Hwa;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.705-708
    • /
    • 2008
  • To obtain tunnel concrete safety in case of fire, this study analyzed fire proof characteristics by fire proof method change, and the results are as follows. As a fire proof characteristics by RABT temperature heating curve, plain concrete experienced severe spalling by initial extremely high temperature. In view of fire proof method, in the cases of organic fiber mixing method and board method, spalling was prevented, and in the case of spray method, severe spalling of over 100mm depth occurred along with exposure of structural concrete including spray coat by heat stress, etc while metal lath, the stiffener, falls off. As for fire proof characteristics by RWS temperature heating curve, in case of organic fiber inclusion, concrete surface experienced fusion of within 5mm, while in the case of spray method, spray coat was severely spalled to a depth of over 100mm causing structural body concrete to expose its reinforcement, and also in the case of board method, board was fused by high temperature, causing structural body concrete be directly exposed to high temperature, which triggered overall fall-off phenomenon, so in such extraordinary high temperature heating condition, establishment of special fire proof measures is needed.

  • PDF

New Fire Resistant Methods of RC Structures Using ECC (구조물의 내화공법에 대한 ECC 적용 가능성)

  • Kim, Jung-Hee;Chun, Byung-Il;Lee, Myung-Ho;Chung, Jae-Min;Ahn, Sang-Ro
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.961-964
    • /
    • 2008
  • Fire safety is one of the important factors to be examined when applying ECC to actual concrete structures. The purpose of this study is to confirm whether the fire resistance of ECC satisfies the fire resistant requirements in order to use the fire protection material in concrete structures. Employed temperature curve are HC and RABT criterion, which are severe in various criterion of fire temperature in concrete structures. The test results show that ECC did not undergo any deterioration of fire resistance nor cause explosive spalling, which had been anticipated due to the presence of organic fibers. With comparison of current concrete and fire-resistance materials, the experimental results of ECC shows the better fire resistance performance than the other.

  • PDF

Experimental Study on the Fire Proofing Characteristic of Fire Resistance Panel that it attaches to PSC Airpit-Slab (PSC 풍도슬래브에 부착된 내화패널의 내화특성에 관한 실험연구)

  • Lee, Doo Sung;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.465-473
    • /
    • 2013
  • In this Study, the performance of precast PSC slabs with fire resistance panel for fire resistance of the tunnel system was evaluated by experimentally. The fire test was performed in fire resistance (electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von stra${\beta}$entunneln) time heating temperature curve. The test results showed that the measured temperatures at the t=0 mm depth of PSC slab with precast fire resistance panel during a fire was maximum temperature $367^{\circ}C$, lower than $380^{\circ}C$ (ITA 2004), when damage occurs. Also, at the t=25 mm, the maximum temperature was $239^{\circ}C$, which was lower than the damage temperature of rebar, $250^{\circ}C$. From the results, the use of precast fire resistance panel (t=25 mm) improves fire resistance of PSC structures.

Fire Resistance of the Concrete Corresponding to the Various Fiber Contents and Heating Curves (섬유의 종류 및 온도가열곡선 변화에 따른 콘크리트의 내화특성)

  • Han, Cheon-Goo;Pei, Chang-Chun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.101-107
    • /
    • 2008
  • This study investigated fundamental characters of the concrete according to various fiber types and contents and their properties of spatting resistance and residual compressive strength after fire test corresponding to ISO and RABT heating corves. The results were summarized as following. The Flowability was gradually declined as the increase of fiber contents, and it was the most favorable with nylon(NY) fibers. The decrease of air contents due to increasing fiber contents was in order by polypropylene(PP), polyvinyl alcohol(PVA) and NY fibers. The compressive strengths were over 40 MPa at 7 days and 50 MPa at 28 days. It was in order by PVA, PP and NY fibers. For the spatting properties, all specimens were prevented at ISO heating curve. In the other hand, the partial spatting at the surface occurred on the plain without fibers, but it was prevented over 0.10 % of PVA and 0.05 % of PP and NY fibers at the RABT heating curve.

A Study on Fire Resistance Character of a Tunnel and an Underground Structure (터널 및 지하구조물의 내화특성에 관한 연구)

  • Yoo, Sang-Gun;Kim, Jung-Joo;Park, Min-Yong;Kim, Eun-Kyum;Lee, Jun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.194-200
    • /
    • 2010
  • Recently, a longitudinal tunnel construction has increased because of subway construction extension, geomorphological effect and the development of construction Technologies etc. When the fire occurs in a tunnel and an underground structure, the many damage of human life and the economic losses are caused. In Korea, fire resistance character study of a tunnel and an underground structure is proceeding. However, when a concrete is exposed to high temperature, study of load carrying capacity reduction and stability evaluation for spalling of a concrete is not enough. Therefore in this study, fire resistance character of a concrete evaluated according to time heating temperature curve(RABT and RWS) and a result compared on virtual fire accident in order to apply fire scenario. Also this study performed thermo-mechanical coupled analysis of a FEM-based numerical technique and estimated fire-induced damage of a tunnel and an underground structure.