• 제목/요약/키워드: Quinone

검색결과 441건 처리시간 0.025초

저영양세균중(低營養細菌中) 질소고정균(窒素固定菌) 및 메타놀이용균(利用菌)의 분류학적위치(分類學的位置)에 관(關)하여 (A Study on the Taxonomic Status for Nitrogen-Fixing, Methanol Utilizing Oligotrophic Bacteria)

  • 신관철;황경숙;하토리 타카하시
    • 농업과학연구
    • /
    • 제16권2호
    • /
    • pp.163-168
    • /
    • 1989
  • 분리(分離)된 저영양세균(低營養細菌)중, 질소고정균(窒素固定菌)과 메타놀 이용균(利用菌)의 대부분이 분류학상(分類學上)새로운 균(菌)으로서 특정지을 수 있었다. 분리된 질소고정균의 경우 형태적 생리적인면에서 Azospirillum에 대응하는 균이라 생각되어 졌으나, 균체지방산조성 및 키논종(種)에 있어서 명확한 차이점을 보여 Azospirillum 속의 새로운 균주로써 추정되었다. 메타놀이용균중 부속기갖는 세포로된 균주들은 prosthecate bacteria(Hyponycrobium sp.)에 대응하는 균이라고 추정되어졌다. 그이외의 regular irregular rods를 나타내는 메타놀이용균에 대해서는 균체지방산조성면에 있어서 서로 다르다는 것이 주목되어져 균체지방산조서의 분석결과(分析結果)를 갖고 화학분류(化學分類)의 측면에서 재검토한 결과 유사도(類似度) 85-90% level에서 8개 cluster로 나뉘어졌다. 일부, cluster에 속하는 균주는 Pseudomonas sp.와 유사한 균으로 추정되었으며, 그 외의 균주들에 대해서는 분류학적 검토가 더욱더 필요로 한다.

  • PDF

Fungicide pyraclostrobin의 고추 세균점무늬병 예방효과 (Foliar Application of the Fungicide Pyraclostrobin Reduced Bacterial Spot Disease of Pepper)

  • 강범용;이장훈;김영철
    • 식물병연구
    • /
    • 제24권1호
    • /
    • pp.59-65
    • /
    • 2018
  • Pyraclostrobin은 광범위한 스펙트럼의 항진균 활성이 있는 퀴논외부저해제(Quinone outside inhibitor, QoI)로 작용하는 살균제이다. 기존 보고에 의하면 pyraclostrobin이 일부 세균병과 바이러스병에 대해 병 저항성을 유도한다고 알려져 있다. 본 연구는 pyraclostrobin 항진균제를 활용하여 고추 세균점무늬병(Xanthomonas euvesicatoria)의 예방 가능성을 검토하였다. Pyraclostrobin은 in vitro 상에서 X. euvesicatoria에 대해 항균활성이 없었지만, 고추에 pyraclostrobin 단독(방제가 69%) 또는 streptomycin과 혼합 살포(방제가 90%) 하였을 때, 고추 세균점무늬병 예방 효과를 나타냈다. Pyraclostrobin의 고추 세균점무늬병 예방 효과는 병원균 접종 1-3일전이 효과적이었다. 이상의 결과로 pyraclostrobin 살진균제를 활용하여 고추 세균점무늬병을 효과적으로 예방할 수 있을 것을 사료된다.

The NAD(P)H: Quinine Oxidoreductase 1 (NQO1) Gene 609 C>T Polymorphism is Associated with Gastric Cancer Risk: Evidence from a Case-control Study and a Meta-analysis

  • Hu, Wei-Guo;Hu, Jia-Jia;Cai, Wei;Zheng, Min-Hua;Zang, Lu;Wang, Zheng-Ting;Zhu, Zheng-Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2363-2367
    • /
    • 2014
  • The association between the NAD(P)H:quinone oxidoreductase 1 (NQO1) gene C609T polymorphism (rs1800566) and gastric cancer has been widely evaluated, but a definitive answer is so far lacking. We first conducted a case-control study to assess this association in a large Han Chinese population, and then performed a meta-analysis to further address this issue. Although our case-control association study indicated no significant difference in the genotype and allele distributions of C609T polymorphism between gastric cancer patients and controls, in the meta analysis involving 4,000 subjects, comparison of alleles 609T and 609C indicated a significantly increased risk (46%) for gastric cancer (95% confidence interval (95%CI) for odds ratio (OR)=1.20-1.79) in individuals with the T allele. The tendency was similar to the homozygote (OR=1.81, 95%CI: 1.16-2.84), dominant models (OR=1.41, 95%CI: 1.12-1.79), as well as recessive model (OR=1.58, 95%CI: 1.06-2.35). Stratified analysis by study design demonstrated stronger associations in population-based than in hospital-based studies. And ethnicity-based analysis demonstrated a significant association in Asians. We conclude that the NQO1 gene C609T polymorphism increases the risk for gastric cancer, especially in Asian populations.

Sphingopyxis granuli sp. nov., a $\beta$-Glucosidase-Producing Bacterium in the Family Sphingomonadaceae in $\alpha$-4 Subclass of the Proteobacteria

  • Kim Myung Kyum;Im Wan Taek;Ohta Hiroyuki;Lee Myung Jin;Lee Sung Taik
    • Journal of Microbiology
    • /
    • 제43권2호
    • /
    • pp.152-157
    • /
    • 2005
  • Strain Kw07$^T$, a Gram-negative, non-spore-forming, rod-shaped bacterium, was isolated from granules in an Up-flow Anaerobic Sludge Blanket (UASB) bioreactor used in the treatment of brewery waste­water. 16S rRNA gene sequence analysis revealed that strain Kw07T belongs to the a-4 subclass of the Proteobacteria, and the highest degree of sequence similarity was determined to be to Sphingopyxis macrogoltabida IFO 15033T (97.8%). Chemotaxonomic data revealed that strain Kw07T possesses a quinone system with the predominant compound Q-I0, the predominant fatty acid C,s:, OJ7c, and sphingolipids, aU of which corroborated our assignment ofthe strain to the Sphingopyxis genus. The results of DNA-DNA hybridization and physiological and biochemical tests clearly demonstrated that strain Kw07T represents a distinct species. Based on these data, Kw07T (= KCTC 12209T = NBRC 100800T) should be classified as the type strain for a novel Sphingopyxis species, for which the name Sphingopyxis granuli sp. novo has been proposed.

홍조류로부터 신규 한천분해미생물 Alteromonas macleodii subsp. GNUM08120의 분리 및 동정 (Isolation and Characterization of a Novel Agar Degrading Bacterium, Alteromonas macleodii subsp. GNUM08120, from Red Macroalgae)

  • 지원재;임주현;박다연;김무찬;김창준;장용근;홍순광
    • 한국미생물·생명공학회지
    • /
    • 제41권1호
    • /
    • pp.8-16
    • /
    • 2013
  • An agar-hydrolyzing marine bacterium, strain GNUM08120, was isolated from Sargassum fulvellum collected from Yeongil bay of East Sea of Korea. The isolate was Gram-negative, aerobic, motile with single polar flagellum, and grew at 1-10% NaCl, pH 5.0-8.0, and $15-37^{\circ}C$. G+C content and the predominant respiratory quinone were 46.13 mol% and Q-8, respectively. The major cellular fatty acids were Summed feature 3 (24.5%), $C_{16:0}$ (21.7%), and $C_{18:1}{\omega}7c$ (12.5%). Based on 16S rRNA gene sequence similarity and DNA-DNA hybridization analyses, strain GNUM08120 was identified as a novel subspecies of Alteromonas macleodii, designated Alteromonas macleodii subsp. GNUM08120. Production of agarase by strain GNUM08120 was likely repressed by the effect of carbon catabolite repression caused by glucose. The crude agarase prepared from 12-h culture broth of strain GNUM08120 exhibited an optimum pH and temperature for agarase activity at 7.0 and $40^{\circ}C$, respectively. The crude enzyme produced (neo)agarobiose, (neo)agarotetraose, and (neo)agarohexaose as the hydrolyzed product of agarose.

A New Species of Hyphomycetes, Aspergillus coreanus sp.nov.,Isolated from Traditional Korean Nuruk

  • Yu, Tae-Shick;Yeo, Soo-Hwan;Kim, Hyun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.182-187
    • /
    • 2004
  • Strain NR $15-1^T$ isolated from traditional Korean Nuruk is described as a new species and named as Aspergillus coreanus NR $15-1^T$ sp. novo Strain NR $15-1^T$ grew rapidly to form yellow-green colonies whose surfaces were velvety on Czapek solution agar. Conidial heads were yellow to light and elliptical, whereas the conidiophore was colorless and typically long. In addition, vesicles were from flask-shaped to globose, and sterigmata are uniseriate. Conidia were spherical and deep yellow-green, and their surfaces were lightly roughened. The G+C content of strain NR $15-1^T$ was 51 mol% and strain NR $15-1^T$contained a dihydrogenated ubiquinone with Q9 (94.9%) as a major quinone. The nucleotide sequences of strain NR $15-1^T$ in the two Internal Transcribed Spacers (ITS 1 and 2) and 5.8S rDNA showed highest similarity when compared with that of A. tubingensis and A. phoenicis NRRL $365^T$. However, based on morphological and chemotaxonomic characteristics, this strain was different from A. tubingensis and A. phoenicis NRRL $365^T$. On the basis of the data presented, it is proposed that strain NR $15-1^T$ should be placed in the genus Aspergillus as a new species, Aspergillus coreanus sp. novo Therefore, the type strain of the new species is strain NR $15-1^T$ (=KCTC 18075P^T,=KCCM 80006^T$.

오미자 Schizandrin C 유도체 DDB 복합물 DWP-04가 Acetaminophen 해독계에 미치는 영향 (Evaluation of a Schzandrin C Derivative DDB-mixed Preparation(DWP-04) on Acetaminophen Detoxification Enzyme System in the Animal Model)

  • 박희준;이명선;지상철;이경태;신영호;최종원
    • 생약학회지
    • /
    • 제36권2호통권141호
    • /
    • pp.81-87
    • /
    • 2005
  • The effects of the DWP-04 [DDB:selenium yeast:glutathione (31.1 : 6.8 : 62.1 (w/w%)] on acetaminophen detoxification enzyme system were studied in rats. Treatment with DWP-04 was prevented againt acetaminophen-induiced hepatotoxicity in rat as evidenced by the decreased formation of lipid peroxide. Effect of DWP-04 on the activities of free radical-generating enzymes, free radical scavenging enzymes and glutathione-related enzymes as well as detoxification mechanism of DWP-04 against acetaminophen-treated was investigated in rat. Activities of cytochrome p450, cytochrome b5, aminopyrine demethylase and aniline hydroxylase as free radical-generating enzymes activities were decreased by the treatment with DWP-04 against acetaminophen treated. Although acetaminophen-induced hepatotoxicity results in the significantly decrease in the level of hepatic glutathione and activities of glutathine S-transferase, quinone reductase, glutathione reductase and ${\gamma}-glutamyl-$cysteine synthetase, these decreasing effects were markedly lowered in the DWP-04-treated rat. Therefore, it was concluded that the mechanism for the observed preventive effect of DWP-04 against the acetaminophen-induced hepatotoxicity was associated with the decreased activities in the free radical-generating enzyme system.

사람 치은섬유모세포에서 잎꼬시래기 에탄올 추출물의 항염증 및 항산화 효과 (Anti-Inflammatory and Antioxidative Effects of Gracilaria textorii Ethanol Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제7권4호
    • /
    • pp.61-69
    • /
    • 2019
  • Purpose : Human gingival fibroblast cell is one of the the main cell types in periodontal tissue, which they can show anti-inflammatory activity through the production of numerous lines of inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukins. Porphyromonas gingivalis, one of the oral pathogens, has reported to play a critical role in the development of periodontal diseases. This study aimed to investigate anti-inflammatory and antioxidative activities of Gracilaria textorii ethanol extract (GTEE) in P. gingivalis derived lipopolysaccharide (LPS-PG) stimulated human gingival fibroblast (HGF)-1 cell line. Methods : In order to analyze anti-inflammatory and antioxidative activities of GTEE in HGF-1 cell line, NOS enzyme activity, expression levels of iNOS, COX-2, NAD(P)H quinone dehydrogenase (NQO)1 and their transcription factors were estimated by Griess reaction and western hybridization. Results : LPS-PG induced overexpression of iNOS and COX-2, which was significantly attenuated by GTEE treatment in a dose-dependent manner without any cytotoxicity. In addition, intracellular NOS activity was in accordance with the result of iNOS expression. Due to important role in the regulation of inflammatory responses, phosphorylated status of p65 and c-jun, each subunit of nuclear factor (NF)-κB and activator protein (AP)-1, was also dose-dependently ameliorated by GTEE treatment. One of phase II enzymes, NQO1, and its transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), were analyzed since elevated phase II enzyme expression inhibited inflammatory response, which was significantly elevated by GTEE treatment in HGF-1 cell line. Conclusion : In conclusion, GTEE mitigated LPS-PG-stimulated inflammatory responses by attenuating NF-κB and AP-1 activation as well as accelerating NQO1 and Nrf2 expression in HGF-1 cell line. These results indicate that GTEE might be utilized a promising strategy for potential anti-inflammatory agent in periodontal diseases.

신물질의 간독성 평가방법 개발 및 기작에 관한 연구

  • 차영남
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1993년도 제2회 신약개발 연구발표회 초록집
    • /
    • pp.97-97
    • /
    • 1993
  • 본 연구과제에서는 적출판류간실험법 (isolated perfused liver technique)을 약물의 간독성 유발 및 보간작용에 관한 실험법으로 개발하고자 butylated hydroxyanisole (BHA) 을 이용하여 보간실험을 하였다. BHA를 식이투여한 흰쥐로부터 적출한 간에 간독성 모델물질로 2,6-dichlorophenolindophenol (DCPIP) 을 관류시켜 관류액내의 DCPIP의 유리형, 환원형, glucuronide, sulfate 포합체의 대사체를 측정하여 DCPIP 외 대사양상을 관찰하였으며, 동시에 간세포 손상으로 관류액내로 유출된 lactate dehydrogenase (LDH)의 활성도를 측정하여 DCPIP예 의할 간세포독성 유발정도를 간접적으로 측정하여 대조군과 비교하였다. 그리고 BHA에 의한 보간작용이 약물대사효소의 변와에 기인한 것인가를 관찰하기 위하여 모델약물로 7-ethoxycoumarin (EC) 이나 EC의 phase I 대사산물인 7-hydroxycoumarin (HC) 을 관류시켜 관류액내의 HC의 유리체, glucuronide 포합체, sulfate 포합체로의 대사량을 측정하여 약물대사시 약물의 활성화에 관계하는 phase I mixed function oxidase (MFO) 효소와 약물의 해독화에 관계하는 phase II 포합효소 (UDP-glucuronyltranesferase(UDPGT)와 sulfotransferase (ST))의 활성도 변화를 측정하여 대조군과 비교하였다. 간독성 모델물질인 DCPIP를 적출한 흰쥐의 간에 관규시켰을때 BHA 전처리군이 LDH가 유출되기 시작하는 시간이 대조군에 비하여 유의적으로 늦었으며, LCH가 유출량도 유의적으로 감소되어 DCPIP에 의한 간독성 유발능력이 BHA에 의하여 감소됨을 관찰하였다. 아울러 DCPIP의 대사체중 환원체와 glucuronide 포합체의 생성량이 증가되어 BHA에 의하여 quinone reductase와 UDPGT 활성도가 증가되었음을 알 수 있었다. 그리고 BHA 전처리에 의하여 MFO효소계와 ST의 활성도에는 변화가 없었으나 UDOGT 의 활성도는 약 2.2배 증가되었다. 이상의 결과로 BHA에 의한 보간작용은 간독성 물질을 활성화시키는 phase I MFO 효소의 활성도에는 변화없이 해독작용에 관여하는 phase II효소들의 활성도 증가에 기인된 것을 알 수 있었다. 그리고 이러한 결과는 적출한 관류간실험법은 여러 약물의 보간효과를 관찰하는 실험법으로 적합할 것으로 사료되었다.

  • PDF

Targeting Nrf2-Mediated Gene Transcription by Triterpenoids and Their Derivatives

  • Loboda, Agnieszka;Rojczyk-Golebiewska, Ewa;Bednarczyk-Cwynar, Barbara;Zaprutko, Lucjusz;Jozkowicz, Alicja;Dulak, Jozef
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.499-505
    • /
    • 2012
  • Chemoprevention represents a strategy designed to protect cells or tissues against various carcinogens and carcinogenic metabolites derived from exogenous or endogenous sources. Recent studies indicate that plant-derived triterpenoids, like oleanolic acid, may exert cytoprotective functions via regulation of the activity of different transcription factors. The chemopreventive effects may be mediated through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. Activation of Nrf2 by triterpenoids induces the expression of phase 2 detoxifying and antioxidant enzymes such as NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) - proteins which can protect cells or tissues against various toxic metabolites. On the other hand, inhibition of other transcription factors, like NF-${\kappa}B$ leads to the decrease in the pro-inflammatory gene expression. Moreover, the modulation of microRNAs activity may constitute a new mechanism responsible for valuable effects of triterpenoids. Recently, based on the structure of naturally occurring triterpenoids and with involvement of bioinformatics and computational chemistry, many synthetic analogs with improved biological properties have been obtained. Data from in vitro and in vivo experiments strongly suggest synthetic derivatives as promising candidates in the chemopreventive and chemotherapeutic strategies.