DOI QR코드

DOI QR Code

Targeting Nrf2-Mediated Gene Transcription by Triterpenoids and Their Derivatives

  • Loboda, Agnieszka (Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University) ;
  • Rojczyk-Golebiewska, Ewa (Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University) ;
  • Bednarczyk-Cwynar, Barbara (Department of Organic Chemistry, Faculty of Pharmacy, University of Medical Sciences) ;
  • Zaprutko, Lucjusz (Department of Organic Chemistry, Faculty of Pharmacy, University of Medical Sciences) ;
  • Jozkowicz, Alicja (Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University) ;
  • Dulak, Jozef (Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University)
  • Received : 2012.10.25
  • Accepted : 2012.11.09
  • Published : 2012.11.30

Abstract

Chemoprevention represents a strategy designed to protect cells or tissues against various carcinogens and carcinogenic metabolites derived from exogenous or endogenous sources. Recent studies indicate that plant-derived triterpenoids, like oleanolic acid, may exert cytoprotective functions via regulation of the activity of different transcription factors. The chemopreventive effects may be mediated through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. Activation of Nrf2 by triterpenoids induces the expression of phase 2 detoxifying and antioxidant enzymes such as NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) - proteins which can protect cells or tissues against various toxic metabolites. On the other hand, inhibition of other transcription factors, like NF-${\kappa}B$ leads to the decrease in the pro-inflammatory gene expression. Moreover, the modulation of microRNAs activity may constitute a new mechanism responsible for valuable effects of triterpenoids. Recently, based on the structure of naturally occurring triterpenoids and with involvement of bioinformatics and computational chemistry, many synthetic analogs with improved biological properties have been obtained. Data from in vitro and in vivo experiments strongly suggest synthetic derivatives as promising candidates in the chemopreventive and chemotherapeutic strategies.

Keywords

References

  1. Ahmad, R., Raina, D., Meyer, C., Kharbanda, S. and Kufe, D. (2006) Triterpenoid CDDO-Me blocks the NF-kappaB pathway by direct inhibition of IKKbeta on Cys-179. J. Biol. Chem. 281, 35764-35769. https://doi.org/10.1074/jbc.M607160200
  2. Aleksunes, L. M., Goedken, M. J., Rockwell, C. E., Thomale, J., Manautou, J. E. and Klaassen, C. D. (2010) Transcriptional regulation of renal cytoprotective genes by Nrf2 and its potential use as a therapeutic target to mitigate cisplatin-induced nephrotoxicity. J. Pharmacol. Exp. Ther. 335, 2-12. https://doi.org/10.1124/jpet.110.170084
  3. Begum, S., Sultana, I., Siddiqui, B. S., Shaheen, F. and Gilani, A. H. (2002) Structure and spasmolytic activity of eucalyptanoic acid from Eucalyptus camaldulensis var. obtusa and synthesis of its active derivative from oleanolic acid. J. Nat. Prod. 65, 1939-1941. https://doi.org/10.1021/np020127x
  4. Bloom, D. A. and Jaiswal A. K. (2003) Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J. Biol. Chem. 278, 44675-44682. https://doi.org/10.1074/jbc.M307633200
  5. Chintharlapalli, S., Papineni, S., Abdelrahim, M., Abudayyeh, A., Jutooru, I., Chadalapaka, G., Wu, F., Mertens-Talcott, S., Vanderlaag, K., Cho, S. D., Smith, R. 3rd and Safe, S. (2009) Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18beta-olean-1,12-dien-30-oate in colon cancer cells. Int. J. Cancer. 125, 1965-1974. https://doi.org/10.1002/ijc.24530
  6. Chintharlapalli, S., Papineni, S., Lei, P., Pathi, S. and Safe, S. (2011) Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors. BMC Cancer 11, 371. https://doi.org/10.1186/1471-2407-11-371
  7. Ciesla, M., Skrzypek, K., Kozakowska, M., Loboda, A., Jozkowicz, A. and Dulak, J. (2011) MicroRNAs as biomarkers of disease onset. Anal. Bioanal. Chem. 401, 2051-2061. https://doi.org/10.1007/s00216-011-5001-8
  8. Deeb, D., Gao, X., Jiang, H., Janic, B., Arbab, A. S., Rojanasakul, Y., Dulchavsky, S. A. and Gautam, S. C. (2010) Oleanane triterpenoid CDDO-Me inhibits growth and induces apoptosis in prostate cancer cells through a ROS-dependent mechanism. Biochem. Pharmacol. 79, 350-360. https://doi.org/10.1016/j.bcp.2009.09.006
  9. Deeb, D., Gao, X., Liu, Y., Jiang, D., Divine, G. W., Arbab, A. S., Dulchavsky, S. A. and Gautam, S. C. (2011) Synthetic triterpenoid CDDO prevents the progression and metastasis of prostate cancer in TRAMP mice by inhibiting survival signaling. Carcinogenesis 32, 757-764. https://doi.org/10.1093/carcin/bgr030
  10. Fujiwara, Y., Komohara, Y., Kudo, R., Tsurushima, K., Ohnishi, K., Ikeda, T. and Takeya, M. (2011) Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3. Oncol. Rep. 26, 1533-1537.
  11. Gao, X., Deeb, D., Hao, J., Liu, Y., Arbab, A. S., Dulchavsky, S. A. and Gautam, S. C. (2010) Synthetic triterpenoids inhibit growth, induce apoptosis and suppress pro-survival Akt, mTOR and NF-{kappa}B signaling proteins in colorectal cancer cells. Anticancer Res. 30, 785-792.
  12. Gao, X., Liu, Y., Deeb, D., Arbab, A. S., Guo, A. M., Dulchavsky, S. A. and Gautam, S. C. (2011) Synthetic oleanane triterpenoid, CDDO-Me, induces apoptosis in ovarian cancer cells by inhibiting prosurvival AKT/NF-kappaB/mTOR signaling. Anticancer Res. 31, 3673-3681.
  13. Giudice, A., Arra, C. and Turco, M. C. (2010) Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol. Biol. 647, 37-74. https://doi.org/10.1007/978-1-60761-738-9_3
  14. Gupta, M. B., Bhalla, T. N., Gupta, G. P., Mitra, C. R. and Bhargava, K. P. (1969) Anti-inflammatory activity of natural products. I. Triterpenoids. Eur. J. Pharmacol. 6, 67-70. https://doi.org/10.1016/0014-2999(69)90067-3
  15. Huang, H. C., Nguyen, T. and Pickett, C. B. (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J. Biol. Chem. 277, 42769-42774. https://doi.org/10.1074/jbc.M206911200
  16. Jutooru, I., Chadalapaka, G., Abdelrahim, M., Basha, M. R., Samudio, I., Konopleva, M., Andreeff, M. and Safe, S. (2010) Methyl 2-cyano-3,12-dioxooleana-1,9-dien-28-oate decreases specificity protein transcription factors and inhibits pancreatic tumor growth: role of microRNA-27a. Mol. Pharmacol. 78, 226-236. https://doi.org/10.1124/mol.110.064451
  17. Kaidery, N. A., Banerjee, R., Yang, L., Smirnova, N. A., Hushpulian, D. M., Liby, K. T., Williams, C. R., Yamamoto, M., Kensler, T. W., Ratan, R. R., Sporn, M. B., Beal, M. F., Gazaryan, I. G. and Thomas, B. (2012) Targeting Nrf2-Mediated Gene Transcription by Extremely Potent Synthetic Triterpenoids Attenuate Dopaminergic Neurotoxicity in the MPTP Mouse Model of Parkinson's Disease. Antioxid. Redox Signal. Epub ahead of print.
  18. Karius, T., Schnekenburger, M., Dicato, M. and Diederich, M. (2012) MicroRNAs in cancer management and their modulation by dietary agents. Biochem. Pharmacol. 83, 1591-1601. https://doi.org/10.1016/j.bcp.2012.02.004
  19. Kwak, M. K. and Kensler, T. W. (2010) Targeting NRF2 signaling for cancer chemoprevention. Toxicol. Appl. Pharmacol. 244, 66-76. https://doi.org/10.1016/j.taap.2009.08.028
  20. Li, W. and Kong, A. N. (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 48, 91-104. https://doi.org/10.1002/mc.20465
  21. Li, Y., Kong, D., Wang, Z. and Sarkar, F. H. (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm. Res. 27, 1027-1041. https://doi.org/10.1007/s11095-010-0105-y
  22. Liby, K., Hock, T., Yore, M. M., Suh, N., Place, A. E., Risingsong, R., Williams, C. R., Royce, D. B., Honda, T., Honda, Y., Gribble, G. W., Hill-Kapturczak, N., Agarwal, A. and Sporn, M. B. (2005) The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. Cancer Res. 65, 4789-4798. https://doi.org/10.1158/0008-5472.CAN-04-4539
  23. Liby, K., Risingsong, R., Royce, D. B., Williams, C. R., Yore, M. M., Honda, T., Gribble, G. W., Lamph, W. W., Vannini, N., Sogno, I., Albini, A. and Sporn, M. B. (2008) Prevention and treatment of experimental estrogen receptor-negative mammary carcinogenesis by the synthetic triterpenoid CDDO-methyl Ester and the rexinoid LG100268. Clin. Cancer Res. 14, 4556-4563. https://doi.org/10.1158/1078-0432.CCR-08-0040
  24. Liby, K., Royce, D. B., Williams, C. R., Risingsong, R., Yore, M. M., Honda, T., Gribble, G. W., Dmitrovsky, E., Sporn, T. A. and Sporn, M. B. (2007a) The synthetic triterpenoids CDDO-methyl ester and CDDO-ethyl amide prevent lung cancer induced by vinyl carbamate in A/J mice. Cancer Res. 67, 2414-2419. https://doi.org/10.1158/0008-5472.CAN-06-4534
  25. Liby, K. T., Royce, D. B., Risingsong, R., Williams, C. R., Maitra, A., Hruban, R. H. and Sporn, M. B. (2010) Synthetic triterpenoids prolong survival in a transgenic mouse model of pancreatic cancer. Cancer Prev. Res. (Phila) 3, 1427-1434. https://doi.org/10.1158/1940-6207.CAPR-10-0197
  26. Liby, K. T., Yore, M. M. and Sporn, M. B. (2007b) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat. Rev. Cancer 7, 357-369. https://doi.org/10.1038/nrc2129
  27. Liu, J., Liu, Y., Mao, Q. and Klaassen, C. D. (1994) The effects of 10 triterpenoid compounds on experimental liver injury in mice. Fundam. Appl. Toxicol. 22, 34-40. https://doi.org/10.1006/faat.1994.1005
  28. Liu, J., Wu, Q., Lu, Y. F. and Pi, J. (2008) New insights into generalized hepatoprotective effects of oleanolic acid: key roles of metallothionein and Nrf2 induction. Biochem. Pharmacol. 76, 922-928. https://doi.org/10.1016/j.bcp.2008.07.021
  29. Liu, X., Jutooru, I., Lei, P., Kim, K., Lee, S. O., Brents, L. K., Prather, P. L. and Safe, S. (2012) Betulinic acid targets YY1 and ErbB2 through cannabinoid receptor-dependent disruption of microRNA-27a:ZBTB10 in breast cancer. Mol. Cancer Ther. 11, 1421-1431. https://doi.org/10.1158/1535-7163.MCT-12-0026
  30. Loboda, A., Jazwa, A., Grochot-Przeczek, A., Rutkowski, A. J., Cisowski, J., Agarwal, A., Jozkowicz, A. and Dulak, J. (2008) Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 10, 1767-1812. https://doi.org/10.1089/ars.2008.2043
  31. Mengoni, F., Lichtner, M., Battinelli, L., Marzi, M., Mastroianni, C. M., Vullo, V. and Mazzanti, G. (2002) In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells. Planta Med. 68, 111-114. https://doi.org/10.1055/s-2002-20256
  32. Mu, X., Shi, W., Sun, L., Li, H., Jiang, Z. and Zhang, L. (2012) Pristimerin, a triterpenoid, inhibits tumor angiogenesis by targeting VEGFR2 activation. Molecules 17, 6854-6868. https://doi.org/10.3390/molecules17066854
  33. Najid, A., Simon, A., Cook, J., Chable-Rabinovitch, H., Delage, C., Chulia, A. J. and Rigaud, M. (1992) Characterization of ursolic acid as a lipoxygenase and cyclooxygenase inhibitor using macrophages, platelets and differentiated HL60 leukemic cells. FEBS Lett. 299, 213-217. https://doi.org/10.1016/0014-5793(92)80117-Y
  34. Neymotin, A., Calingasan, N. Y., Wille, E., Naseri, N., Petri, S., Damiano, M., Liby, K. T., Risingsong, R., Sporn, M., Beal, M. F. and Kiaei, M. (2011) Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Radic. Biol. Med. 51, 88-96. https://doi.org/10.1016/j.freeradbiomed.2011.03.027
  35. Nichols, D. P., Ziady, A. G., Shank, S. L., Eastman, J. F. and Davis, P. B. (2009) The triterpenoid CDDO limits inflammation in preclinical models of cystic fibrosis lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 297, L828-836. https://doi.org/10.1152/ajplung.00171.2009
  36. Petronelli, A., Pannitteri, G. and Testa, U. (2009) Triterpenoids as new promising anticancer drugs. Anticancer Drugs 20, 880-892. https://doi.org/10.1097/CAD.0b013e328330fd90
  37. Phillips, D. R., Rasbery, J. M., Bartel, B. and Matsuda, S. P. (2006) Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 9, 305-314. https://doi.org/10.1016/j.pbi.2006.03.004
  38. Pi, J., Bai, Y., Reece, J. M., Williams, J., Liu, D., Freeman, M. L., Fahl, W. E., Shugar, D., Liu, J., Qu, W., Collins, S. and Waalkes, M. P. (2007) Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2. Free Radic. Biol. Med. 42, 1797-1806. https://doi.org/10.1016/j.freeradbiomed.2007.03.001
  39. Pitha-Rowe, I., Liby, K., Royce, D. and Sporn, M. (2009) Synthetic triterpenoids attenuate cytotoxic retinal injury: cross-talk between Nrf2 and PI3K/AKT signaling through inhibition of the lipid phosphatase PTEN. Invest. Ophthalmol. Vis. Sci. 50, 5339-5347. https://doi.org/10.1167/iovs.09-3648
  40. Reisman, S. A., Aleksunes, L. M. and Klaassen, C. D. (2009) Oleanolic acid activates Nrf2 and protects from acetaminophen hepatotoxicity via Nrf2-dependent and Nrf2-independent processes. Biochem. Pharmacol. 77, 1273-1282. https://doi.org/10.1016/j.bcp.2008.12.028
  41. Shin, S., Wakabayashi, J., Yates, M. S., Wakabayashi, N., Dolan, P. M., Aja, S., Liby, K. T., Sporn, M. B., Yamamoto, M. and Kensler, T. W. (2009) Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. Eur. J. Pharmacol. 620, 138-144. https://doi.org/10.1016/j.ejphar.2009.08.022
  42. Singh, G. B., Singh, S., Bani, S., Gupta, B. D. and Banerjee, S. K. (1992) Anti-inflammatory activity of oleanolic acid in rats and mice. J. Pharm. Pharmacol. 44, 456-458. https://doi.org/10.1111/j.2042-7158.1992.tb03646.x
  43. Speranza, G., Gutierrez, M. E., Kummar, S., Strong, J. M., Parker, R. J., Collins, J., Yu, Y., Cao, L., Murgo, A. J., Doroshow, J. H. and Chen, A. (2012) Phase I study of the synthetic triterpenoid, 2-cyano-3, 12-dioxoolean-1, 9-dien-28-oic acid (CDDO), in advanced solid tumors. Cancer Chemother. Pharmacol. 69, 431-438. https://doi.org/10.1007/s00280-011-1712-y
  44. Sporn, M. B., Liby, K. T., Yore, M. M., Fu, L., Lopchuk, J. M. and Gribble, G. W. (2011) New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress. J. Nat. Prod. 74, 537-545. https://doi.org/10.1021/np100826q
  45. Stack, C., Ho, D., Wille, E., Calingasan, N. Y., Williams, C., Liby, K., Sporn, M., Dumont, M. and Beal, M. F. (2010) Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington's disease. Free Radic. Biol. Med. 49, 147-158. https://doi.org/10.1016/j.freeradbiomed.2010.03.017
  46. Suh, N., Honda, T., Finlay, H. J., Barchowsky, A., Williams, C., Benoit, N. E., Xie, Q. W., Nathan, C., Gribble, G. W. and Sporn, M. B. (1998) Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res. 58, 717-723.
  47. Sykiotis, G. P. and Bohmann, D. (2010) Stress-activated cap'n'collar transcription factors in aging and human disease. Sci. Signal. 3, re3. https://doi.org/10.1126/scisignal.3112re3
  48. Takagi, K., Park, E. H. and Kato, H. (1980) Anti-inflammatory activities of hederagenin and crude saponin isolated from Sapindus mukorossi Gaertn. Chem. Pharm. Bull. (Tokyo) 28, 1183-1188. https://doi.org/10.1248/cpb.28.1183
  49. Tokuda, H., Ohigashi, H., Koshimizu, K. and Ito, Y. (1986) Inhibitory effects of ursolic and oleanolic acid on skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Lett. 33, 279-285. https://doi.org/10.1016/0304-3835(86)90067-4
  50. Vannini, N., Lorusso, G., Cammarota, R., Barberis, M., Noonan, D. M., Sporn, M. B. and Albini, A. (2007) The synthetic oleanane triterpenoid, CDDO-methyl ester, is a potent antiangiogenic agent. Mol. Cancer Ther. 6, 3139-3146. https://doi.org/10.1158/1535-7163.MCT-07-0451
  51. Was, H., Dulak, J. and Jozkowicz, A. (2010) Heme oxygenase-1 in tumor biology and therapy. Curr. Drug Targets 11, 1551-1570. https://doi.org/10.2174/1389450111009011551
  52. Wei, Y., Gong, J., Yoshida, T., Eberhart, C. G., Xu, Z., Kombairaju, P., Sporn, M. B., Handa, J. T. and Duh, E. J. (2011) Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia-reperfusion injury. Free Radic. Biol. Med. 51, 216-224. https://doi.org/10.1016/j.freeradbiomed.2011.04.026
  53. Yore, M. M., Liby, K. T., Honda, T., Gribble, G. W. and Sporn, M. B. (2006) The synthetic triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole blocks nuclear factor-kappaB activation through direct inhibition of IkappaB kinase beta. Mol. Cancer. Ther. 5, 3232-3239. https://doi.org/10.1158/1535-7163.MCT-06-0444
  54. Yoshimi, N., Wang, A., Morishita, Y., Tanaka, T., Sugie, S., Kawai, K., Yamahara, J. and Mori, H. (1992) Modifying effects of fungal and herb metabolites on azoxymethane-induced intestinal carcinogenesis in rats. Jpn. J. Cancer Res. 83, 1273-1278. https://doi.org/10.1111/j.1349-7006.1992.tb02758.x
  55. Yu, A. L., Lu, C. Y., Wang, T. S., Tsai, C. W., Liu, K. L., Cheng, Y. P., Chang, H. C., Lii, C. K. and Chen, H. W. (2010) Induction of heme oxygenase 1 and inhibition of tumor necrosis factor alpha-induced intercellular adhesion molecule expression by andrographolide in EA.hy926 cells. J. Agric. Food Chem. 58, 7641-7648. https://doi.org/10.1021/jf101353c
  56. Yu, X. and Kensler, T. (2005) Nrf2 as a target for cancer chemoprevention. Mutat. Res. 591, 93-102. https://doi.org/10.1016/j.mrfmmm.2005.04.017
  57. Yuk, J. E., Lee, M. Y., Kwon, O. K., Cai, X. F., Jang, H. Y., Oh, S. R., Lee, H. K. and Ahn, K. S. (2011) Effects of astilbic acid on airway hyperresponsiveness and inflammation in a mouse model of allergic asthma. Int. Immunopharmacol. 11, 266-273. https://doi.org/10.1016/j.intimp.2010.12.002
  58. Zeng, X. Y., Wang, Y. P., Cantley, J., Iseli, T. J., Molero, J. C., Hegarty, B. D., Kraegen, E. W., Ye, Y. and Ye, J. M. (2012) Oleanolic acid reduces hyperglycemia beyond treatment period with Akt/FoxO1-induced suppression of hepatic gluconeogenesis in type-2 diabetic mice. PLoS One 7, e42115. https://doi.org/10.1371/journal.pone.0042115

Cited by

  1. Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy vol.25, pp.11, 2014, https://doi.org/10.1016/j.jnutbio.2014.06.006
  2. A Lanosteryl Triterpene from Protorhus longifolia Improves Glucose Tolerance and Pancreatic Beta Cell Ultrastructure in Type 2 Diabetic Rats vol.22, pp.8, 2017, https://doi.org/10.3390/molecules22081252
  3. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism vol.73, pp.17, 2016, https://doi.org/10.1007/s00018-016-2223-0
  4. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives vol.4, pp.1, 2015, https://doi.org/10.3390/antiox4010204
  5. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1 vol.15, pp.1, 2016, https://doi.org/10.1186/s12943-016-0550-2
  6. Oleanolic acid: a promising neuroprotective agent for cerebral ischemia vol.10, pp.4, 2015, https://doi.org/10.4103/1673-5374.155414
  7. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke vol.6, pp.1, 2016, https://doi.org/10.1038/srep25626
  8. Protective effect of betulin on cognitive decline in streptozotocin (STZ)-induced diabetic rats vol.57, 2016, https://doi.org/10.1016/j.neuro.2016.09.009
  9. Simvastatin Treatment Upregulates HO-1 in Patients with Abdominal Aortic Aneurysm but Independently of Nrf2 vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/2028936
  10. Effect of 7, 8-dihydroxyflavone on the up-regulation of Nrf2-mediated heme oxygenase-1 expression in hamster lung fibroblasts vol.50, pp.6, 2012, https://doi.org/10.1007/s11626-014-9735-4
  11. Activation of TGR5 Partially Alleviates High Glucose-Induced Cardiomyocyte Injury by Inhibition of Inflammatory Responses and Oxidative Stress vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/6372786
  12. Quinovic Acid Impedes Cholesterol Dyshomeostasis, Oxidative Stress, and Neurodegeneration in an Amyloid- β -Induced Mouse Model vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/9523758
  13. Albiflorin alleviates cognitive dysfunction in STZ-induced rats vol.13, pp.14, 2012, https://doi.org/10.18632/aging.203274
  14. The activation of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling blunts cholestasis-induced liver and kidney injury vol.10, pp.4, 2012, https://doi.org/10.1093/toxres/tfab073
  15. Anti-Inflammatory and Anticancer Properties of Birch Bark-Derived Betulin: Recent Developments vol.10, pp.12, 2012, https://doi.org/10.3390/plants10122663