• 제목/요약/키워드: Queue Length Distribution

검색결과 79건 처리시간 0.029초

QUEUE LENGTH DISTRIBUTION IN A QUEUE WITH RELATIVE PRIORITIES

  • Kim, Jeong-Sim
    • 대한수학회보
    • /
    • 제46권1호
    • /
    • pp.107-116
    • /
    • 2009
  • We consider a single server multi-class queueing model with Poisson arrivals and relative priorities. For this queue, we derive a system of equations for the transform of the queue length distribution. Using this system of equations we find the moments of the queue length distribution as a solution of linear equations.

AN APPROXIMATION FOR THE QUEUE LENGTH DISTRIBUTION IN A MULTI-SERVER RETRIAL QUEUE

  • Kim, Jeongsim
    • 충청수학회지
    • /
    • 제29권1호
    • /
    • pp.95-102
    • /
    • 2016
  • Multi-server queueing systems with retrials are widely used to model problems in a call center. We present an explicit formula for an approximation of the queue length distribution in a multi-server retrial queue, by using the Lerch transcendent. Accuracy of our approximation is shown in the numerical examples.

TWO-CLASS M/PH,G/1 QUEUE WITH IMPATIENCE OF HIGH-PRIORITY CUSTOMERS

  • Kim, Jeongsim
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.749-757
    • /
    • 2012
  • We consider the M/PH,G/1 queue with two classes of customers in which class-1 customers have deterministic impatience time and have preemptive priority over class-2 customers who are assumed to be infinitely patient. The service times of class-1 and class-2 customers have a phase-type distribution and a general distribution, respectively. We obtain performance measures of class-2 customers such as the queue length distribution, the waiting time distribution and the sojourn time distribution, by analyzing the busy period of class-1 customers. We also compute the moments of the queue length and the waiting and sojourn times.

복수휴가형 이산시간 GI/G/1 대기체계에 대한 수정부가변수법 (On the Modified Supplementary Variable Technique for a Discrete-Time GI/G/1 Queue with Multiple Vacations)

  • 이두호
    • 대한산업공학회지
    • /
    • 제42권5호
    • /
    • pp.304-313
    • /
    • 2016
  • This work suggests a new analysis approach for a discrete-time GI/G/1 queue with multiple vacations. The method used is called a modified supplementary variable technique and our result is an exact transform-free expression for the steady state queue length distribution. Utilizing this result, we propose a simple two-moment approximation for the queue length distribution. From this, approximations for the mean queue length and the probabilities of the number of customers in the system are also obtained. To evaluate the approximations, we conduct numerical experiments which show that our approximations are remarkably simple yet provide fairly good performance, especially for a Bernoulli arrival process.

비선점 우선순위 M/G/1 대기행렬의 결합 고객수 분포 (The joint queue length distribution in the nonpreemptive priority M/G/1 queue)

  • 김길환;채경철
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.1104-1110
    • /
    • 2006
  • In this paper we present a simple approach to the joint queue length distribution in the nonpreemptive priority M/G/1 queue. Without using the supplementary variable technique, we derive the joint probability generating function of the stationary queue length at arbitrary time.

  • PDF

DISCRETE-TIME QUEUE WITH VARIABLE SERVICE CAPACITY

  • LEE YUTAE
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.517-527
    • /
    • 2005
  • This paper considers a discrete-time queueing system with variable service capacity. Using the supplementary variable method and the generating function technique, we compute the joint probability distribution of queue length and remaining service time at an arbitrary slot boundary, and also compute the distribution of the queue length at a departure time.

A simple computational procedure to obtain the queue-length distribution of the discrete-time GI/G/1 queue

  • Kim, Nam-Ki
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.1129-1132
    • /
    • 2005
  • Based on a discrete-time version of the distributional Little's law, we present a simple computational procedure to obtain the queue-length distribution of the discrete-time GI/G/1 queue from its waiting-time distribution that is available by various existing methods. We also discuss our numerical experience and address a couple of remarks on possible extensions of the procedure.

  • PDF

THE QUEUE LENGTH DISTRIBUTION OF PHASE TYPE

  • Lim, Jong-Seul;Ahn, Seong-Joon
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.505-511
    • /
    • 2007
  • In this paper, we examine the Markov chain $\{X_k,\;N_k;\;k=0,\;1,...$. We show that the marginal steady state distribution of Xk is discrete phase type. The implication of this result is that the queue length distribution of phase type for large number of examples where this Markov chain is applicable and shows a queueing application by matrix geometric methods.

AN MMAP[3]/PH/1 QUEUE WITH NEGATIVE CUSTOMERS AND DISASTERS

  • Shin, Yang-Woo
    • 대한수학회보
    • /
    • 제43권2호
    • /
    • pp.277-292
    • /
    • 2006
  • We consider a single-server queue with service time distribution of phase type where positive customers, negative customers and disasters arrive according to a Markovian arrival process with marked transitions (MMAP). We derive simple formulae for the stationary queue length distributions. The Laplace-Stieltjes transforms (LST's) of the sojourn time distributions under the combinations of removal policies and service disciplines are also obtained by using the absorption time distribution of a Markov chain.

Approximation of M/G/c Retrial Queue with M/PH/c Retrial Queue

  • Shin, Yang-Woo;Moon, Dug-Hee
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.169-175
    • /
    • 2012
  • The sensitivity of the performance measures such as the mean and the standard deviation of the queue length and the blocking probability with respect to the moments of the service time are numerically investigated. The service time distribution is fitted with phase type(PH) distribution by matching the first three moments of service time and the M/G/c retrial queue is approximated by the M/PH/c retrial queue. Approximations are compared with the simulation results.