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AN MMAP[3]/PH/1 QUEUE WITH
NEGATIVE CUSTOMERS AND DISASTERS

YANG W0O SHIN

ABSTRACT. We consider a single-server queue with service time
distribution of phase type where positive customers, negative cus-
tomers and disasters arrive according to a Markovian arrival pro-
cess with marked transitions (MMAP). We derive simple formulae
for the stationary queue length distributions. The Laplace-Stieltjes
transforms (LST’s) of the sojourn time distributions under the com-
binations of removal policies and service disciplines are also ob-
tained by using the absorption time distribution of a Markov chain.

1.- Introduction

Computer systems without viruses have been modelled and analyzed
by using conventional queueing system. However, conventional queueing
model is not appropriate to the system with viruses since the effects of
viruses to the system are different from those of ordinary jobs. Some
viruses just infect one or more files and the infected files may not be
recoverable and should be deleted. Some viruses may be critical to the
system and destroy all the files in the system and the system is sent for
repair. A virus may originate from outside the system e.g., floppy disk,
or may come from another system e.g., by an electronic mail. The more
files may induce more infected ones. Thus the arrivals of ordinary jobs
and viruses may not be independent. From this example, we consider
a single-server queue with three types of arrivals; positive customers,
negative customers and disasters whose arrival processes are correlated.
Positive customers are ordinary ones who form a queue but the negative
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customers and disasters do not form a queue. Negative customer is a
signal to delete a positive customer in the system if any presents, and
disappeared immediately. A disaster removes all the customers in the
system upon its arrival and causes the system to start a repair period.
For the reflection of the correlation among the three we use a Markovian
arrival process with marked transitions (MMAP) introduced in He and
Neuts [9] as an arrival process.

Queues with negative arrivals or disasters have been much developed
since its introduction by Gelenbe [5], e. g. see [8, 7, 10, 13, 15, 14]. For a
survey and comprehensive references for queues with negative customers
or disasters, see Artalejo [1] and for a general treatments of the queueing
networks with negative customers, see Chao et al. [2]. Recently a queue
with correlated arrivals of customers and negative customers and/or dis-
asters was analyzed in [15, 14]. The model considered in this paper is
simpler than that in Shin [14] except introducing negative customers.
However, our model and results have some different features from those
in Shin [14]. The negative arrival deletes a customer in the system and
the negative customers may be considered as a supplementary server.
Thus our model can be considered as a queue in which the arrival pro-
cess and the service times are not independent. The queue considered
in this paper provides a Markov chain with block structured transition
rates that is neither M/G/1 type nor GI/M/1 type considered in Neuts
(11, 12] but it is a block matrix version of the Markov chain in Chen
and Renshaw [3]. We derive simple formulae for the queue length dis-
tributions by using the fundamental matrix of the transient quasi-birth-
and-death (QBD) process. The Laplace-Stieltjes transforms (LST’s) of
sojourn time distributions under the combinations of two removal poli-
cies, Removal of Customers at the End (RCE) and Removal of Customer
in the Head (RCH) and two service disciplines, First-Come-First-Served
(FCFS) and Last-Come-First-Served (LCFS) preemptive repeat with
resampling are obtained by using the absorption time distribution of a
Markov chain with absorbing states.

This paper is organized as follows. We describe the model in detail
in Section 2. In Section 3, we investigate the queue length process. The
stationary distributions for the queue length process at an arbitrary time
and at embedded points are presented in Sections 4 and 5. In Section
6, the LST’s of sojourn time distributions are derived.

Throughout the paper, we denote by 1, and I, the column n-vector
whose components are all 1 and identity matrix of size n, respectively
and e, ; represents the n x 1 vector whose kth component is 1 and others
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are all 0. If it is clear in the context, the size n of vectors and identity
matrix may be omitted.

2. The model

We consider a single-server queue with three types of arrivals, posi-
tive customers, negative customers and disasters. We assume that the
service time is a phase type distribution with representation PH (8, S)
of order v with S® = —51 > 0 and S° # 0. We consider two service
disciplines, FCFS and LCFS with preemptive repeat with resampling.
An arrival of a negative customer causes a positive customer to leave the
system. Two removal strategies, RCE and RCH are considered. When a
disaster occurs, it removes all the customers in the system and damages
the system, which requires repair time of phase type distribution with
representation PH(y,L) of order r with L’ = —L1 > 0 and L # 0
for the system to be operated normally again. Even though the system
might be empty upon a disaster arrival, the system still needs to be
repaired. During the repair time, any types of arrivals are not allowed
to enter the system. For an arrival process of positive customers, neg-
ative customers and disasters, consider an MMAP with representation
(Do, D_1,D_5,D1), where Dy, k = —1,—2,1 are nonnegative m x m
matrices and the matrix Dy of size m has strictly negative diagonal el-
ements and nonnegative off-diagonal elements. The matrices D_z, D_;
and D; correspond to arrival rates of disasters, negative customers and
positive customers, respectively. The first arrival of positive customers
after a repair period occurs in batch of size k with rate ax D1, k > 1 and
a=y 2, kag < co. We assume that D =Dy + D_; + D_3+ D; is an
irreducible infinitesimal generator with (D_1+ D_2)1 # 0 and D;1 # 0.
Note from the construction that the counting processes for the arrivals
of positive customers, negative customers and disasters are MAP’s with
representations (D — D1, D;), (D —D_3,D_;) and (D — D_3,D_5), re-
spectively. It can be seen from He and Neuts [9] that the covariance
between any two counting processes among the three is not zero and
hence they are not independent.

3. Queue length process

The evolution of the number of customers in the system, the arrival
phase, the repair phase and the service phase are represented by the
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continuous time Markov chain. Let k = {(k,%,7) : 1<i<m,1<j <
v}, k=1,2,... with (k,4,j) corresponding to the state that there are k
customers in the system and the arrival phase is 7 and the service phase
is j. Because the first arrival of positive customers after a repair period
has different features from ordinary ones, we distinguish the states of
empty system into the three cases, repair period, the time interval from
the end of repair period to the first arrival of positive customers and the
period from the first visit to the set of states {k,k > 1} to the disaster
arrival and we respectively denote the states by 0* = {(0*,4,1) : 1 <i <
m,1<I<r},0={(0,:) :1<i<m}and 0={(0,7) : 1 <i<m}.
Then the state of the Markov chain is given by § = {0*,0',0,1,...}.
Labelling the states in the lexicographic order, the generator @ of the
Markov chain is given by

0 0 0 1 2 3
/B B O O O O
0/ C’ Al Q a1~A0 OQA() Oz3A0
o|lc o 4 4
(3.1) Q= 1 C O A A Ag :
2 cC O Ao A4 Ao
3 c O Az Ay
where
By«=D&® L, BZIm®L0, C'=D_o®"7,
C=D3®1,-y, A4 =D1gpB, Ay = Do + Dy,
A1 =Dy @ S, A2=D_1®1,,+Im®SO

and Ag and A, depend on the service disciplines and the removal strate-
gies, respectively as follows

_ D1®Il/a FCFS
(3:2) Ao = { Di®(1,-8), LCFS,

[ D1®1,-B)+I1,®(S°-8), RCH
(3.3) A2 = { D_1 @ (SO ’3), RCE,

where ® and @ denote the Kronecker product and Kronecker sum [6],
respectively.

Since the matrix A = Ag + A1 + As is not conservative, that is,
Al,,, <0and Al,,, # 0, the Markov chain @ is positive recurrent [16].
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4. Stationary distribution

Let  be the stationary distribution of @, that is, 7@ =0 and 71 = 1.
Write the vector 7 in the block partitioned form « = (mge, mor, ®o, 71, - - -)
with

o = (7r0*,~j,1 < 7 S m,l Sj Sr), oy = (71'0/1;,1 < ) < m),
mo = (moi,1<i<m), ﬂkZ(Wkij,lgiSm,lﬁjSV), k> 1.
LEMMA 4.1. Let
o0 v
me =My +mo+ YD Fi,
k=1 j=1

where ;= (Tgij, 1 <4 <m) is an 1 x m vector. Then (mgs, m1+) is the
solution of the equation

DoL I[,®L% \
(41) (1[0* 7r1t) ( D_2 ®'Y D-— D_2 ) =0
with the normalizing condition

(4.2) mos 1 + M+l = 1.

Proof. Note that the component mg+;; of mg» denotes the probability
that the system is in repair period with the arrival phase of ¢ and repair
phase of j in stationary state. Similarly, my«; of Ty« is the probability
of that the system is operating normally with arrival phase of 7. The
Lemma is proved from the observation that the system is under repair

and operating state, alternately and the disaster occurs according an
MAP with representation (D — D_g, D_5). a

Partitioning the state space into 0 = (0*,0/,0) and 1 = (1,2,...), we
rewrite the matrix @ in the following block partitioned form

0 1
0(B; B*
9= <02 Q*)
and let 75 = (mo«, A, M), T = (M1,M2,...). We have from Q) = 0 that
m5B; +m;C* =0, w;B*+m;Q"=0 '

and hence
(43) m5(By + B*(-Q")7'C") = 0,
(4.4) Ty =mB*(~Q") 7,
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where (—Q*)7! is the fundamental matrix of @*. Note that 7 is a
stationary vector of the censored Markov chain of ) with censoring set
0.

After correcting typos for V'(1,k) and V’(2, k) in Theorem 10 of Choi
et al. [4] and rewriting the results, the block matrix components X (%, j)
of (—Q*)~! are given as follows.

LEMMA 4.2 (Choi et al. [4]). Let Gl, Gy and Ry, Ry be the minimal
nonnegative solutions of the following equations

Ay + A1G1 + AoG% =0, A2G% + A1G9 4+ Ag = 0,
R%Az + R1A1+ Ag =0, Ag + Ry Ay + R%A() =0.

The (%, ) block matrix components X (i,3), i,j = 1,2,... of the funda-
mental matrix (—Q*)™! = (X (i, 7)) of @* are given as follows.
(1) Column blocks:

X(4,1) = GU—(A1+ 4Gy i > 1,
. GlU; +GLy, 1<i<, .
X VTR T Tl 2,
(Z,J) { Gzl—lUJ_{_G'Ll JUl) ZZJ"‘l, J =z
where
Uy = [—(A2G2+A1 +A0G1)]_1,
Uj (A1+A0G1)_1A2G32U1, j=2
(2) Row blocks:
X(1,j) = [~(A+RiA) 7RI G>1,
. ViRIT'+ R, 1< <y,
I R B M
V;Rl +ViRy ", j>i+1,

122

)

where

Vi = [~(RpAo+ A1+ Rids)] ™),
Vi = (Ai1+Ridy) 'RiAW, i2>2.

PROPOSITION 4.3. The stationary distribution 7 is given by
(4.5) Ty = WotB(——/il)_l,
(4.6) mo = my(AgY (1)Ag)[—(A1 + ApX(1,1)A2)] 7Y,
(4.7) 7 = wpAoY (k) +medoX(1,k), k>1,



An MMAPI[3)/PH/1 queue with negative customers and disasters 283

where

o0
Y(k) =) 0iX(i,k), k=1,2,...
i=1

and mps Is given in lemma 4.1.

Proof. Straightforward computation yields that
(4.8)
B+ B 0]
Bi+B*(-@ ) 'cr = C'+AyC A AYA |,
Cl-}-AgX(l)C 0O A +AOX(1,1)A2

where Y = 327, Y(k) and X(1) = > 72, X(1,k). Thus we have from
(4.3) and (4.8) that (4.5) and (4.6). Similarly, (4.7) is obtained from
(4.4). O

5. Queue length distribution at embedded points

In this section, we derive distributions for the system states at em-
bedded points such as the epoch of a customer arrival, the epoch of a
disaster arrival.

5.1. At an arrival epoch of a positive arrival

Let 2, = (Znij, 1 <i<m, 1 <j <v)(n>1) bean my-vector whose
component Zy;; is the conditional probability that given a customer is
about to arrive at the system, there are n customers in the system im-
mediately before a positive arrival, and the phases of the arrival process
and the service distribution are ¢ and j right after the arrival of the
customer. Analogous descriptions hold for zy = (4,1 < 7 < m) and
zg = (20,1 < i < m).

Note that the probability that when the system is operating, there
is a positive arrival with the phase transition of arrival process and the
service time from (4, 7) to (¢/,5') in (¢, t 4+ At) is [D1],0;5: At + o(At),
where d;; is 1 for j = j' and 0 otherwise and if under the FCFS discipline
and is [D1];70;: At + o(At) under the LCFS discipline. Thus when the
system is in state m, n > 1, the probability that there is an arrival of
a customer with the phase transitions of arrival process and the service
time in (¢, t + At) is m,ApAt + o(At). It can be easily seen that the
probability of a positive arrival in (¢, ¢ + At) is AAt + o(At), where

A= (amy +m)D11m + I [(D11m) @ 1,
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is the arrival rate of customers and IT; = Y 72 | 7y is given by

I, = ’Il‘ou‘ioy + Woz&o[—-(Al + RlAg)]—l(I - Rl)_l
= myAgY +moAg[—(Ag + A1 + R1Az)] .

Thus the probability vector that the system is in state n, n > 1 at the
epoch of a customer arrival is

lim mn Ao At + o(At) _ l
Ats0 AAt+o(At) A

mn —_ ﬂnAO, n Z 1.
Similarly, the probabilities that the customer finds the system is in states
0’ and 0 upon its arrival are respectively given by

1 - 1
Ty = XWOIAO, o = Xﬂ‘vo.

For the state of the system immediately after an arrival of randomly
chosen (positive) customers, called tagged customer, we first assume
the FCFS discipline. Let y,, = (Ynkij,1 <4 < m,1 < j < v)
(n > 0,k > 0) be an mv-vector whose component Yn,kj 18 the con-
ditional probability that given a positive customer is about to arrive
at the system, there are n and k customers ahead and behind of the
customer, respectively with arrival phase of ¢ and service phase of j
immediately after the arrival. Using the similar procedure of z,,, Yn ko>
n > 0, k > 0 are given by

1

Yoo = 7 [—7"0' +7f0] Ay,
1

Yno = X[ n+11l‘(yA0 +1r,.A0] n>1
1

Ynk = Xan-;k+17r01A0 n>0, k>1.

Let y, x(LCFS) be the vector corresponding to y,, ; under the LCFS
discipline. Then it can be seen that

Yo,o(LCFS) = 4o 0 Y x(LCFS) =ypp, n 21, k>0

and

1
B\ [ak+17rolA0 +7l‘kA0] k>1.
(87

Note that it seems to yg ;(LCFS) and yj, o have the same formulae, but
Ap depends on the service discipline as given in (3.2).

Yo (LCFS) =
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5.2. Immediately before an arrival of a disaster

Since a disaster can not occur during the repair period, the system
is always operating immediately before an occurrence of a disaster. Let
2n = (24,1 <1 <m,1 <5< r),n=0,1,2,..., where z,;; is the condi-
tional probability that there are n customers in the system immediately
before a disaster arrival and the phases of arrival process and repair
time immediately after the arrival of a disaster are ¢ and j, respectively.
Following the similar procedure to that of y,, we have that

. %(1(0/4—1(0)0,, n=0,
n )\Ld”ncg n:].,z,...,

where the arrival rate Ag of disaster is

A = (1(‘0/ + 7l‘0)D_21m + Hl[(D_zlm) & 1,,].

6. Sojourn time distributions

Let W denote the time period during which a customer spends in
the system from the epoch of arrival to the epoch of his service com-
pletion. We assume that W is infinite if the customer is removed from
the system before its service completion. We call the monitored cus-
tomer whose sojourn time distribution is sought for by us the tagged
customer. Like all positive customers the tagged customer obeys the
specified service discipline and removal strategy after its arrival. We
denote by C,, the customer who finds n customers in the system on its
arrival. In this section, we derive the LST W*(s) of the distribution
function W(z) = P(W < z) under combinations of service disciplines
FCFS and LCFS with preemptive restart with resampling and removal
strategies RCH and RCE. Let &,(t) and &,(t) be the number of cus-
tomers ahead and behind of the tagged customer at time ¢, respectively.
Let J(t) and Js(t) be the phases of arrival process and the service time,
respectively at time t. By Ty, T, and Ts we denote the first time that
the customer’s removal/departure from the system by an arrival of a
disaster, a negative customer and a service completion, respectively and
let T = min(Ty,T,,,Ts). Defineforn >0, k>0,1<i<m,1<j<vp,

Wn,k,ij(x) = P(Ts < z]£(0) = n,&(0) =k, J(0) =1, Js(o) = .7)

and let Wy, p(z) = Whk45(2),1 <3 <m,1 < j <v) be the column mv-
vector which is obtained by listing the W), ;;;(x) in the lexicographic
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order, that is,
Wn,k(x)
= (Wn,k',ll(m)a ey Wn,k,lll(x)a ey Wn,k,ml (m)v ey Wn,k,ml/(m))t7

where x! is the transpose of the vector . Then W*(s) is given by the
form

[o 2NN )
(6.1) W(8) =D Y GnsWak(s),

n=0 k=0
where #,, ; is either y,, , or y,, ,(LCFS) depending on the service disci-
pline and W}, (s) is the LST of W), x(x). We shall derive the W; .(s) in
terms of the ébsorption time of a Markov chain reflecting the combina-
tions of removal strategies and service disciplines. For the waiting time
distribution, we need the following lemma.

LEMMA 6.1. Consider a Markov chain By = {E¢(t),t > 0} on the
state space 0, U {0,1,2,...}, where 0, = {d,n,s} and k = {(k,1),...,
(k,p)}, k > 0 whose infinitesimal generator Qo is of the form

d n s 0 1 2 3

o./O O O O O O O
0 Cp bo ag A’{ Aa
1 (551 bl ai A; AI A(’;
(6.2) Q= 2|¢c; b ay Ay AT AX ;
3

C3 b3 as ; A’f

where A}, k = 0,1,2 are p X p matrices and ag, by, ¢x are column p-
vectors with ay +by +¢x # 0, k =0,1,2,.... Let Ty be the first time
that the Markov chain Zy absorbs in 0, and

ij(iL‘) = P(TU < .’L’,EO(TO) = 515(0) = (k’]))7 k> Oa 1< J Sp

Then the LST H}(s) of the column p-vector Hy(z) = (Hgj(z),j =
1,2,...,p)t is given as follows:
If ay # 0 for some k > 1, then H}(s) is given by

(6.3) Hi(s) =Y Xi;(s)a;, k=0,1,2,...,
3=0

where X,:‘j(s), j =0,1,2,... are the kth row blocks of (sI — Q%)™ which
can be obtained from Lemma 4.2 by replacing Ay, A1 and Az with Aj,
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A} — sI and A}, respectively and
iAo
N 2 41 fo
Qo = Ay Aj

In particular, ifag # 0 anday, =0, k =1,2,..., then H}(s) is given by
(6.4)  Hi(s) = [G*(s)]F(sI — A} — AYG*(s)) lap, k=0,1,2,...,
where G*(s) is the minimal nonnegative solution of the matrix equation
(6.5) Al — (sI — A})G*(s) + Ay(G*(s))? = 0.

Proof. By using the first step argument, we have that for k£ = 0,1,
2,... '

(6.6)  Hi(s)=(sI— A7) H(ak + ASHi_1(s) + ALH}11(5))
with H*,(s) = 0. Writing (6.6) in matrix form, we have that

(sI - Q3)H"(s) =a,

where
ao Hg(s)
a) . Hi(s)
a= , H¥(s) = | Hz(s)

and hence (6.3) is obtained.

Assume that ag # 0 and ax =0, k =1,2,.... Let G*(s) be the LST
of the first passage time to the level 0 of the Markov chain Ej starting
the level 1. Following the standard arguments in Neuts [12], it can be
seen that G*(s) is the minimal nonnegative solution of the equation

G*(s) = (sI — A}) A5 + A5 (G™())%),
which is equivalent to (6.5) and
(6.7) Hi(s) = [G*(s)]FHL(s), k=1,2,....

The formula (6.4) is obtained by substituting (6.7) into (6.6). O
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6.1. RCH with FCFS discipline

Under the RCH removal strategy, upon a negative arrival, a positive
customer in service is removed and hence the customers behind the
tagged customer do not affect the sojourn time of the tagged customer
and hence we can write W, (z) = Wy, x(z) for all k£ > 0. Thus W*(s) is
given by

W*(s) =Y _y,Wn(s), s >0,
n=0

where
_i [ % (3mo +mo) Ao, n =0,
= k=0yn’k - % (a%+17TOIA0 +1rnA0> , N> ]_,

and @ = > 2 o, § > 1.

Now we derive W*(s). Consider a Markov chain E; = {E:(t),t > 0}
on the state space S = 0, U {0,1,2,...}, where 0, = {d,n,s} and k =
{(k,i,5), 1 <i<m,1<j<v}, k>0 with B1(t) = (§a(?), J (), Js(t))
for 0 <t <T = min(Ty, T,,,Ts) and Z1(t) € 0, for ¢ > T. Labelling the
states in the lexicographic order, the generator Qroy—-rcors of &1 is of
the form (6.2) with ay = b = 0 for k > 1 and

a’O = ]-m ®SO,
b() = (D—llm) ® 11/,
C, = (D~21m) &® 11/, k >0

and
Aa =0, AT = A; + Ao, A; = A,.
Note that the sojourn time distribution of the customer C,, is the same

as that of the absorption time to the state s of the Markov chain =;. It
follows from Lemma 6.1 that

(6.8) W7 (s) =[G*(s)]"(s] — A1 - A)) (1, ® 8%, n=0,1,2,...
with G*(S) = (SI — A - AoG*(s))_lAg.
6.2. RCH with LCFS discipline

Using the similar argument for the RCH-FCFS discipline, we see that
under the RCH-LCFS discipline, Wp(z) = W, x(z) and W*(s) is given
by

W) = Y un(LOPSWI(s), s >0,

n=0
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where

Yn(LOFS) = 1(LOFS) = {

k=0
Under the RCH-LCF'S discipline, the generator Qrcy_rors of the Mar-
kov chain E; is given of the form (6.2) with

At =Ay, Al=A;, A}=A

and ay, by and ¢, are the same as those of Qroy_rors. Noting that
the sojourn time distribution is the same that the distribution of the
absorption time to the state s of the Markov chain =i, we have from
Lemma 6.1 that

(6.9) Wi(s) = [G*(s)]"(sI—A1~AoG*(5)) 1 (1,,®5%), n=0,1,2,...,
where G*(s) is the minimal nonnegative solution of the equation
Ag — (sI — A))G*(s) + Ao(G*(s))? = 0.
6.3. RCE with FCFS discipline

A 1
%géﬂ'o/ +~7l'0) A0+XH1A0, n =20,
%"QL;}-?TO/A(), n > 1.

For a fixed n > 0, consider a Markov chain Zg = {=3(¢),¢ > 0} on the
state space S = 0,U{k}, £k =0,1,2,...}, where k}, = {(k,{,%,5),0 <[ <
n,1<i<m,1<j<v} k>0with Za(t) = (&(2), &a(t), J(¢), Js(t)) for
0 <t < T and Z3(t) € 0. for t > T. Under the RCE-FCFS discipline,
the generator Qrer-reors of Zg can be written by the form (6.2) with

ar = €enpii11 ® (1m & SO), k > Oa

1,41 ® (D—llm) ®1l, k=0,
0, k>1,

C = 1n+1 ® (D-—21m) & 11/, k>0

b, =

and
Ay = L1 Die 1),
A7 Int1® (Do @ S) + Jnt1 @ [Im @ (S° ® B)),
A = L1a® (D18 15L),

where J,41 is the (n + 1) x (n 4 1) matrix of the form

0
1 0

Jn—l—l =
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We denote [Hjx(z|n)]s; by
[Hix(z|n)lj = P(T < 2,52(T) = 5|82(0) = (k, 1,4, 7)),

where k> 0,0<1<nand 1<i<m,1<j<v and define the column
(n + 1)mw-vector Hi(x|n) and its LST H{(s|n) by

Holaf Hiulo)
Hyzn)=| f " Hisw = ”“fs'"’) ,
H,i(z|n) H;;k(s|n)

where Hj(z|z) is the column muv-vector which is obtained by listing
[Hix(z|z)}ij, 1 <4 <m,1 < j <vin the lexicographic order. It follows
from Lemma 6.1 that

(6.10) Hi(sln) = | > X5;(9) | [en+10 ® (1 ® 5],

7=0
where X;.(s), j = 0,1,2,... are the kth row block of (sI — Q)L It
follows from the construction of the Markov chain Z9 that the LST of
the conditional distribution of the sojourn time of the customer given
that £,(0) = n, &(0) = k, and J(0) = i, J5(0) = j is the (¢, j) component
of HY,(s|n), that is,

Woi(s) = Hpy(s|n).

6.4. RCE with LCFS discipline

Consider a Markov chain E3 = {Z3(¢),t > 0} on the state space
S§=0,U{ky, k=0,1,2,...}, with E3(t) = (£a(?), &(t), J (t), Js(t)) for
0 <t < T and E3(t) € 0 for t > T. Under the RCE-LCFS discipline,
the generator Qgrcp-rors of Z3 can be written by the form (6.2) with

ar = 1n+1®(1m®50)a k=0,
T 10, k>1,

bk = €p41,1 ® [(D-—llm) & 11/], k > O,

1n+1 &® (D—Zlm) ® 11/7 k Z 0

Il

Ck
and
AS = In+1 ® (Dl ® (]-m ﬂ))a
b = Lin®Do®S)+ T @ [In ® (D-1® L)),
A} Iny1 ® (Im ® (S° - B)).
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Similar to the case of RCH-LCFS, we define [Kj(z|n)]i; by
[Kik(z|n)lij = P(T < ,E3(T) = 5| Z3(0) = (I, k,4, 7)),

where ] > 0,0 <k <n 1<i<m1<j<v, and denote the

column (n + 1)mv-vector by K;(z|n) whose kth column block of size

my is Kj(z|n) and its LST K[ (s|n). It follows from Lemma 6.1 that
1 (s|n) is given by

K} (sln)
= [GR())'(sI — A] = AJGL(9)) ' 1n41 ® (Lm ® S7)], 1=0,1,2,..,
where G, (s) is the minimal nonnegative solution of the matrix equation
A5 — (s — AD)GA(s) + A3(Gi(s))2 = 0.

The LST of the conditional distribution of the sojourn time of the cus-
tomer given that £, (0) = n, &(0) = k, and J(0) = ¢, J,(0) = j is
(K7 (s|n)]sj, that is,

Wok(s) = Kpi(sln).
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