• Title/Summary/Keyword: Queue Capacity

Search Result 98, Processing Time 0.021 seconds

Asymptotic Analyses of a Statistical Multiplexor with Heterogeneous ATM Sources

  • Lee, Hyong-Woo;Mark, Jon-Wei
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.29-40
    • /
    • 1997
  • Two asymptotic analyses of the queue length distribution at a statistical multiplexor supporting heterogeneous exponential on-off sources are considered. The first analysis is performed by approximating the cell generation rates as a multi-dimensional Ornstein-Uhlenbeck process and then applying the Benes queueing formula. In the second analysis, w state with a system of linear equations derived from the exact expressions of the dominant eigenvalue of the matrix governing the queue length distribution. Assuming that there are a large number of sources, we obtain asymptotic approximations to the dominant eigenvalue. Based on the analyses, we define a traffic descriptor to include the mean and the variance of the cell generation rate and a burstiness measure. A simple expression for the quality of service (QoS) in cell loss rate is derived in terms of the traffic descriptor parameters and the multiplexor parameters (output link capacity and buffer size). The result is then used to quantify the factors determining the required capacity of a call taking the statistical multiplexing gain into consideration. As an application of the analyses, we can use the required capacity calculation for simple yet effective connection admission control(CAC) algorithms.

  • PDF

Performance Analysis of Handoff Channel Assignment Scheme in CDMA Cellular System (CDMA 셀룰러시스템에서의 핸드오프 채널할당기법 성능분석)

  • Lee, Dong-Myung;Lee, Chul-Hee
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.17-29
    • /
    • 1999
  • In this paper, the prioritized queueing handoff scheme in CDMA (Code Division Multiple Access) cellular system is proposed. Also, the analytical survey for the proposed scheme is carried out, and the performance of this scheme is compared with that of non prioritized scheme and FIFO (First In First Out) queue scheme by computer simulation. The handoff region is defined as the time between the handoff treshold and the receiver threshold, and it is used for the maximum queue waiting time in the proposed scheme. The handoff and the receiver thresholds are defined as rewpectively: 1) the time that the Pilot Strength Measurement Message in the neighbor in the neighbor cell is received to the BS (Base Station) under the T_ADD threshold; and 2) the time that the T_DROP timer is expired and the Pilot Strength Measurement Message in the current cell is received to the BS under the T_DROP threshold. The performance metrics for analyzing the proposed scheme are : 1) probability of forced termination; 2) probability of call blocking; 3) ratio of carried traffic to total offered load; 4) average queue size; 5) average handoff delay time in queue. The simulation results show that the proposed scheme maintains high performance for handoff requests at a small penalty in total system capacity.

  • PDF

QoS Adaptive Flow based Active Queue Management Algorithm and Performance Analysis (QoS 적응형 플로우 기반 Active Queue Management 알고리즘 및 성능분석)

  • Kang, Hyun-Myoung;Choi, Hoan-Suk;Rhee, Woo-Seop
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.80-91
    • /
    • 2010
  • Due to the convergence of broadcasting and communications, IPTV services are spotlighted as the that next-generation multimedia services. IPTV services should have functionality such as unlimited channel capacity, extension of media, QoS awareness and are required increasing traffic and quality control technology to adapt the attributes of IPTV service. Consequently, flow based quality control techniques are needed. Therefore, many studies for providing Internet QoS are performed at IETF (Internet Engineering Task Force). As the buffer management mechanism among IP QoS methods, active queue management method such as RED(Random Early Detection) and modified RED algorithms have proposed. However, these algorithms have difficulties to satisfy the requirements of various Internet user QoS. Therefore, in this paper we propose the Flow based AQM(Active Queue Management) algorithm for the multimedia services that request various QoS requirements. The proposed algorithm can converge the packet loss ratio to the target packet loss ratio of required QoS requirements. And we present a performance evaluation by the simulations using the ns-2.

A Dynamical Hybrid CAC Scheme and Its Performance Analysis for Mobile Cellular Network with Multi-Service

  • Li, Jiping;Wu, Shixun;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1522-1545
    • /
    • 2012
  • Call admission control (CAC) plays an important role in mobile cellular network to guarantee the quality of service (QoS). In this paper, a dynamic hybrid CAC scheme with integrated cutoff priority and handoff queue for mobile cellular network is proposed and some performance metrics are derived. The unique characteristic of the proposed CAC scheme is that it can support any number of service types and that the cutoff thresholds for handoff calls are dynamically adjusted according to the number of service types and service priority index. Moreover, timeouts of handoff calls in queues are also considered in our scheme. By modeling the proposed CAC scheme with a one-dimensional Markov chain (1DMC), some performance metrics are derived, which include new call blocking probability ($P_{nb}$), forced termination probability (PF), average queue length, average waiting time in queue, offered traffic utilization, wireless channel utilization and system performance which is defined as the ratio of channel utilization to Grade of Service (GoS) cost function. In order to validate the correctness of the derived analytical performance metrics, simulation is performed. It is shown that simulation results match closely with the derived analytic results in terms of $P_{nb}$ and PF. And then, to show the advantage of 1DMC modeling for the performance analysis of our proposed CAC scheme, the computing complexity of multi-dimensional Markov chain (MDMC) modeling in performance analysis is analyzed in detail. It is indicated that state-space cardinality, which reflects the computing complexity of MDMC, increases exponentially with the number of service types and total channels in a cell. However, the state-space cardinality of our 1DMC model for performance analysis is unrelated to the number of service types and is determined by total number of channels and queue capacity of the highest priority service in a cell. At last, the performance comparison between our CAC scheme and Mahmoud ASH's scheme is carried out. The results show that our CAC scheme performs well to some extend.

Ideal Saturation Flow Rate and Geometric Adjustment Factors at Urban Signalized Intersection (도시부 신호교차로의 기본용량 및 기하구조 보정계수)

  • 오영태;심대영
    • Journal of Korean Society of Transportation
    • /
    • v.10 no.2
    • /
    • pp.5-24
    • /
    • 1992
  • This research presets the method of determining basic capacity of signalized intersection using the concept of ideal saturation flow rate. Vehicle discharge rates during green time were collected and studied as part of the preparation of Korean Highway Capacity Manual. From the result of this study the ideal saturation flow rate and saturation queue position were determined. In addition, based on the ideal saturation flow rate two geometric adjustment factors(lane width and grade adjustment factors) were studied. The results were presented in this paper.

  • PDF

Traffic Analysis Model for Exit Ramp Congestion at Urban Freeway (고속도로 진출램프 대기행렬 발생 현상 분석모형 개발)

  • Jeon, Jae-Hyeon;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.30-40
    • /
    • 2010
  • The freeway congestion is largely generated by a mainline spillover of the exit ramp queue. So it is necessary to study for modeling of the phenomenon and applying the model. In this study, the authors evaluated applicability of the Supply-Demand model, which can express traffic flow for the freeway by applying flexibly supply and demand curves for capacity of the freeway. First the authors proposed methods processing input data required in the Supply-Demand model, such as sending & receiving functions and time-varying capacity constraints for the freeway mainline. After modeling the Supply-Demand application model, the authors applied the model to the site including congested Hongeun exit ramp in Seoul Ring-road, and improved the model by adjusting application techniques and calibrating parameters. The result of the analysis showed that the Supply-Demand model yielded a queuing pattern and queue location similar to them observed in the field data, and applicability of the Supply-Demand model was varified.

A Study on Roundabout Signal Metering Operation by Considering Entry Lane's Traffic Volume (진입교통량을 고려한 회전교차로 Signal Metering 운영에 관한 연구)

  • Ahn, Woo-Young
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.175-181
    • /
    • 2012
  • Under unsaturated capacity conditions with balanced approach flows, roundabout gives less delay and queue length than existing signalized intersections; however, over capacity conditions with unbalanced approach flows(flow above 450 pcu/h/lane), roundabouts efficiency drops due to the short gap between entering vehicles and circulating vehicles. This study provides a roundabout Signal Metering transfer standard and operation method. In this study, a four-way-approach with one-lane roundabout is selected to compare the Signal Metering performance for the case of unbalanced flow conditions. The performance is evaluated by using SIDRA software in terms of average delay and queue length. The result shows that the Signal Metering provides substantial improvements for the case of total approach flow is 1,800~2,000 pcu/h in which the main approach flow ratio is 60~70% gives 30~40% less delay and 30~60% less queue length than normal roundabout operation. Also, it is approved that operational performance saving can be achieved when the Metered Approach is selected adjoining to the main approach in pair.

Stationary Waiting Times in Simple Fork-and-Join Queues with Finite Buffers and Communication Blocking (통신차단규칙을 따르는 유한버퍼 단순 조립형 대기행렬 망에서의 안정대기시간)

  • Seo, Dong-Won;Lee, Seung-Man
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.109-117
    • /
    • 2010
  • In this study, we consider stationary waiting times in a simple fork-and-join type queue which consists of three single-server machines, Machine 1, Machine 2, and Assembly Machine. We assume that the queue has a renewal arrival process and that independent service times at each node are either deterministic or non-overlapping. We also assume that the Machines 1 and 2 have an infinite buffer capacity whereas the Assembly Machine has two finite buffers, one for each machine. Services at each machine are given by FIFO service discipline and a communication blocking policy. We derive the explicit expressions for stationary waiting times at all nodes as a function of finite buffer capacities by using (max,+)-algebra. Various characteristics of stationary waiting times such as mean, higher moments, and tail probability can be computed from these expressions.

Navigational Channel Capacity Models (항해수로 능력산정 모형 검토)

  • 임진수
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.1
    • /
    • pp.5-15
    • /
    • 1990
  • As a result of the lack of methodology for the determination of navigational channel capacity and the consequence lack of effective management of traffic, navigational channels are often grossly underutilized or highly congested. The traditional rule of first-come-first-served admission of vessels to channels is not efficient as it assumes equal time intervals between entrance of consecutive vessels. A new vessel traffic management system is developed in this research and methodologies to measure the improvement in the channel capacity are developed. Methodology to measure the channel performances for three queue disciplines are developed. The effects of changes in major factors on the channel capacity model such as channel length, fleet mix and arrival rate, as well as changes in strategy are analyzed. Under given channel conditions, best strategy are recommended. Also, a method for effective stochastic channel capacity simulation was developed. The results of analysis and as ertions are compared with the results of simulation runs to prove their applicability.

  • PDF

Efficient Transmission Mode Selection Scheme for MIMO-based WLANs

  • Thapa, Anup;Kwak, Kyung Sup;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2365-2382
    • /
    • 2014
  • While single-user spatial multiplexing multiple-input multiple-output (SU-MIMO) allows spatially multiplexed data streams to be transmitted to one node at a time, multi-user spatial multiplexing MIMO (MU-MIMO) enables the simultaneous transmission to multiple nodes. However, if the transmission time required to send packets to each node varies considerably, MU-MIMO may fail to utilize the available MIMO capacity to its full potential. The transmission time typically depends upon two factors: the link quality of the selected channel and the data length (packet size). To utilize the cumulative capacity of multiple channels in MIMO applications, the assignment of channels to each node should be controlled according to the measured channel quality or the transmission queue status of the node.A MAC protocol design that can switch between MU-MIMO and multiple SU-MIMO transmissions by considering the channel quality and queue status information prior to the actual data transmission (i.e., by exchanging control packets between transmitter and receiver pairs) could address such issues in a simple but in attractive way. In this study, we propose a new MAC protocol that is capable of performing such switching and thereby improve the system performance of very high throughput WLANs. The detailed performance analysis demonstrates that greater benefits can be obtained using the proposed scheme, as compared to conventional MU-MIMO transmission schemes.