• Title/Summary/Keyword: Query Topic

Search Result 60, Processing Time 0.023 seconds

Extraction of Military Ontology Using Six-Step Bottom-up Approach (6단계 상향식 방법에 의한 국방 온톨로지 추출)

  • Ra, Min-Young;Yang, Kyung-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.17-26
    • /
    • 2009
  • In national defense, established information systems are mainly based on simple information processing, such as mass data query. They have thus lacked intelligent ability of information and knowledge representation ability. We therefore need the research about the construction of military ontology which is the main topic for knowledge construction. Military ontology can help us develop the intelligent national defense information system which can search and manage information efficiently. In this paper, we present the six-step bottom-up approach for military ontology extraction, then we apply this approach to one of military domain, called national defense educational training, and finally implement it using $Prot\acute{e}g\acute{e}$ which is one of the most useful ontology development tool.

A Design of Information Security Education training Databank System for Preventing Computer Security incident (침해사고 예방을 위한 정보보안 교육훈련 문제은행 시스템)

  • Mo, Eun-Su;Lee, Jae-Pil;Lee, Jae-Gwang;Lee, Jun-Hyeon;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.277-280
    • /
    • 2015
  • Smishing, Phishing personal privacy caused by Incident accidents such as Phishing information security has become a hot topic. Such incidents have privacy in personal information management occurs due to a lack of user awareness. This paper is based on the existing structure of the XML Tag question bank used a different Key-Value Structure-based JSON. JSON is an advantage that does not depend on the language in the text-based interchange format. The proposed system is divided into information security sector High, Middle and Low grade. and Provides service to the user through the free space and the smart device and the PC to the constraints of time. The use of open source Apache Load Balancing technology for reliable service. It also handles the user's web page without any training sessions Require server verification result of the training(training server). The result is sent to the training server using jQuery Ajax. and The resulting data are stored in the database based on the user ID. Also to be used as a training statistical indicators. In this paper, we design a level training system to enhance the user's information security awareness.

  • PDF

A Study on the Intellectual Structure of Metadata Research by Using Co-word Analysis (동시출현단어 분석에 기반한 메타데이터 분야의 지적구조에 관한 연구)

  • Choi, Ye-Jin;Chung, Yeon-Kyoung
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.3
    • /
    • pp.63-83
    • /
    • 2016
  • As the usage of information resources produced in various media and forms has been increased, the importance of metadata as a tool of information organization to describe the information resources becomes increasingly crucial. The purposes of this study are to analyze and to demonstrate the intellectual structure in the field of metadata through co-word analysis. The data set was collected from the journals which were registered in the Core collection of Web of Science citation database during the period from January 1, 1998 to July 8, 2016. Among them, the bibliographic data from 727 journals was collected using Topic category search with the query word 'metadata'. From 727 journal articles, 410 journals with author keywords were selected and after data preprocessing, 1,137 author keywords were extracted. Finally, a total of 37 final keywords which had more than 6 frequency were selected for analysis. In order to demonstrate the intellectual structure of metadata field, network analysis was conducted. As a result, 2 domains and 9 clusters were derived, and intellectual relations among keywords from metadata field were visualized, and proposed keywords with high global centrality and local centrality. Six clusters from cluster analysis were shown in the map of multidimensional scaling, and the knowledge structure was proposed based on the correlations among each keywords. The results of this study are expected to help to understand the intellectual structure of metadata field through visualization and to guide directions in new approaches of metadata related studies.

A School-tailored High School Integrated Science Q&A Chatbot with Sentence-BERT: Development and One-Year Usage Analysis (인공지능 문장 분류 모델 Sentence-BERT 기반 학교 맞춤형 고등학교 통합과학 질문-답변 챗봇 -개발 및 1년간 사용 분석-)

  • Gyeongmo Min;Junehee Yoo
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.3
    • /
    • pp.231-248
    • /
    • 2024
  • This study developed a chatbot for first-year high school students, employing open-source software and the Korean Sentence-BERT model for AI-powered document classification. The chatbot utilizes the Sentence-BERT model to find the six most similar Q&A pairs to a student's query and presents them in a carousel format. The initial dataset, built from online resources, was refined and expanded based on student feedback and usability throughout over the operational period. By the end of the 2023 academic year, the chatbot integrated a total of 30,819 datasets and recorded 3,457 student interactions. Analysis revealed students' inclination to use the chatbot when prompted by teachers during classes and primarily during self-study sessions after school, with an average of 2.1 to 2.2 inquiries per session, mostly via mobile phones. Text mining identified student input terms encompassing not only science-related queries but also aspects of school life such as assessment scope. Topic modeling using BERTopic, based on Sentence-BERT, categorized 88% of student questions into 35 topics, shedding light on common student interests. A year-end survey confirmed the efficacy of the carousel format and the chatbot's role in addressing curiosities beyond integrated science learning objectives. This study underscores the importance of developing chatbots tailored for student use in public education and highlights their educational potential through long-term usage analysis.

A Study Comparing Public and Medical Librarians' Perceptions of Evaluation Guidelines for Health & Medical Information (건강정보원 평가기준에 대한 공공도서관 및 의학도서관 사서간 인식비교 연구)

  • Noh, Younghee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.1
    • /
    • pp.107-129
    • /
    • 2014
  • Providing reliable and high quality information sources will be one of the basic skills of librarians in the future. Therefore, this study proposed evaluation criteria for health-related information sources based on a survey of public and medical librarians. As a result, a total of 21 items were selected as evaluation items, in three groups. The first, the health information content group, had 13 evaluation items, including accuracy, recency, medical expertise, regular updates, consideration of audience, objectivity, ease of understanding, plain (non-scientific or technical) language, completeness, relevance to the topic, verifiability, citation of information sources, and specification of precautions or warnings. The second group, the health-information sources group, had 5 evaluation items including clarity of health information for achieving its purpose, clarification of the responsibility of health information, compliance to the privacy policy, fairness of health information providers, and ethics of health information providers. The third group was the health-information website design group, and featured 4 evaluation criteria: ease of access, search capabilities, website ease of use, and query-response services.

The Multimedia Searching Behavior of Korean Portal Users (국내 포털 이용자들의 멀티미디어 검색 행태 분석)

  • Park, So-Yeon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.44 no.1
    • /
    • pp.101-115
    • /
    • 2010
  • The main difference between web searching and traditional searching is that the web provides and supports multimedia searching. This study aims to investigate the multimedia searching behavior of users of NAVER, a major Korean search portal. In conducting this study, the query logs and click logs of a unified search service were analyzed. The results of this study show that among the multimedia queries submitted by users, audio searches are the dominant media type, followed similarly by video and image searches. On the other hand, among the multimedia documents clicked on, video is the most popular collection type followed by image and audio collections. Entertainment is the most popular topic in both multimedia queries and clicks. The results of this study can be implemented for the portal's development of multimedia content and searching algorithms.

Image Retrieval Method Based on IPDSH and SRIP

  • Zhang, Xu;Guo, Baolong;Yan, Yunyi;Sun, Wei;Yi, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1676-1689
    • /
    • 2014
  • At present, the Content-Based Image Retrieval (CBIR) system has become a hot research topic in the computer vision field. In the CBIR system, the accurate extractions of low-level features can reduce the gaps between high-level semantics and improve retrieval precision. This paper puts forward a new retrieval method aiming at the problems of high computational complexities and low precision of global feature extraction algorithms. The establishment of the new retrieval method is on the basis of the SIFT and Harris (APISH) algorithm, and the salient region of interest points (SRIP) algorithm to satisfy users' interests in the specific targets of images. In the first place, by using the IPDSH and SRIP algorithms, we tested stable interest points and found salient regions. The interest points in the salient region were named as salient interest points. Secondary, we extracted the pseudo-Zernike moments of the salient interest points' neighborhood as the feature vectors. Finally, we calculated the similarities between query and database images. Finally, We conducted this experiment based on the Caltech-101 database. By studying the experiment, the results have shown that this new retrieval method can decrease the interference of unstable interest points in the regions of non-interests and improve the ratios of accuracy and recall.

An Active Co-Training Algorithm for Biomedical Named-Entity Recognition

  • Munkhdalai, Tsendsuren;Li, Meijing;Yun, Unil;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.575-588
    • /
    • 2012
  • Exploiting unlabeled text data with a relatively small labeled corpus has been an active and challenging research topic in text mining, due to the recent growth of the amount of biomedical literature. Biomedical named-entity recognition is an essential prerequisite task before effective text mining of biomedical literature can begin. This paper proposes an Active Co-Training (ACT) algorithm for biomedical named-entity recognition. ACT is a semi-supervised learning method in which two classifiers based on two different feature sets iteratively learn from informative examples that have been queried from the unlabeled data. We design a new classification problem to measure the informativeness of an example in unlabeled data. In this classification problem, the examples are classified based on a joint view of a feature set to be informative/non-informative to both classifiers. To form the training data for the classification problem, we adopt a query-by-committee method. Therefore, in the ACT, both classifiers are considered to be one committee, which is used on the labeled data to give the informativeness label to each example. The ACT method outperforms the traditional co-training algorithm in terms of f-measure as well as the number of training iterations performed to build a good classification model. The proposed method tends to efficiently exploit a large amount of unlabeled data by selecting a small number of examples having not only useful information but also a comprehensive pattern.

Data Mining and Construction of Database Concerning Effects of Vitis Genus (산머루 관련 정보수집 및 데이터베이스의 구축)

  • Kim, Min-A;Jo, Yun-Ju;Shin, Jee-Young;Shin, Min-Kyu;Bae, Hyun-Su;Hong, Moo-Chang;Kim, Yang-Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.551-556
    • /
    • 2012
  • The database for the oriental medicine had been existed in documentation in past times and it has been developed to the database type for random accesses in the information society. However, the aspects of the database are not so diversified and the database for the bio herbal material exists in widened type dictionary style. It is a situation that the database which handles the in-depth raw herbal medicines is not sufficient in its quantity and quality. Korean wild grape is a deciduous plant categorized into the Vitaceae and it was found experimentally that it has various medical effects. It is one of the medical materials with higher potentiality of academic study and commercialization recently because it has a bigger possibility to be applied into diverse industrial fields including the medical product for health, food and beauty. We constituted the cooperative system among the Muju cluster business group for Korean mountain wild grapes, Physiology Laboratory in Kyung Hee University Oriental Medicine and Medical Classics Laboratory in Kyung Hee University Oriental Medicine with a view to focusing on such potentiality and a database for Korean wild grapes was made a touchstone for establishing the in-depth database for the single bio medical materials. First of all, the literatures based on the North East Asia in ancient times had been categorized into the classical literature (Korean literature published by government organization, Korean classical literature, Chinese classical literature and classical literature fro Korean and Chinese oriental medicine) and modern literature (Modern literature for oriental medicine, modern literature for domestic and foreign herbal medicine) to cover the eastern and western research records and writings related to Korean wild grapes and the text-mining work has been performed through the cooperation system with the Medical Classics Laboratory in Kyung Hee University Oriental Medicine. First of all, the data for the experiment and theory for Korean wild grape were collected for the Medline database controlled by the Parliament Library of USA to arrange the domestic and foreign theses with topic for Korean wild grapes and the network hyperlink function and down load function were mounted for self-thesis searching function and active view based on the collected data. The thesis searching function provides various auxiliary functions and the searching is available according to the diverse searching/queries such as the name of sub species of Korean wild grape, the logical intersection index for the active ingredients, efficacy and elements. It was constituted for the researchers who design the Korean wild grape study to design of easier experiment. In addition, the data related to the patents for Korean wild grape which were collected from European Patent Office in response to the commercialization possibility and the system available for searching and view was established in the same viewpoint. Perl was used for the query programming and MS-SQL for database establishment and management in the designing of this database. Currently, the data is available for free use and the address is as follows. http://163.180.41.43:8011/index.html

A Ranking Algorithm for Semantic Web Resources: A Class-oriented Approach (시맨틱 웹 자원의 랭킹을 위한 알고리즘: 클래스중심 접근방법)

  • Rho, Sang-Kyu;Park, Hyun-Jung;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.31-59
    • /
    • 2007
  • We frequently use search engines to find relevant information in the Web but still end up with too much information. In order to solve this problem of information overload, ranking algorithms have been applied to various domains. As more information will be available in the future, effectively and efficiently ranking search results will become more critical. In this paper, we propose a ranking algorithm for the Semantic Web resources, specifically RDF resources. Traditionally, the importance of a particular Web page is estimated based on the number of key words found in the page, which is subject to manipulation. In contrast, link analysis methods such as Google's PageRank capitalize on the information which is inherent in the link structure of the Web graph. PageRank considers a certain page highly important if it is referred to by many other pages. The degree of the importance also increases if the importance of the referring pages is high. Kleinberg's algorithm is another link-structure based ranking algorithm for Web pages. Unlike PageRank, Kleinberg's algorithm utilizes two kinds of scores: the authority score and the hub score. If a page has a high authority score, it is an authority on a given topic and many pages refer to it. A page with a high hub score links to many authoritative pages. As mentioned above, the link-structure based ranking method has been playing an essential role in World Wide Web(WWW), and nowadays, many people recognize the effectiveness and efficiency of it. On the other hand, as Resource Description Framework(RDF) data model forms the foundation of the Semantic Web, any information in the Semantic Web can be expressed with RDF graph, making the ranking algorithm for RDF knowledge bases greatly important. The RDF graph consists of nodes and directional links similar to the Web graph. As a result, the link-structure based ranking method seems to be highly applicable to ranking the Semantic Web resources. However, the information space of the Semantic Web is more complex than that of WWW. For instance, WWW can be considered as one huge class, i.e., a collection of Web pages, which has only a recursive property, i.e., a 'refers to' property corresponding to the hyperlinks. However, the Semantic Web encompasses various kinds of classes and properties, and consequently, ranking methods used in WWW should be modified to reflect the complexity of the information space in the Semantic Web. Previous research addressed the ranking problem of query results retrieved from RDF knowledge bases. Mukherjea and Bamba modified Kleinberg's algorithm in order to apply their algorithm to rank the Semantic Web resources. They defined the objectivity score and the subjectivity score of a resource, which correspond to the authority score and the hub score of Kleinberg's, respectively. They concentrated on the diversity of properties and introduced property weights to control the influence of a resource on another resource depending on the characteristic of the property linking the two resources. A node with a high objectivity score becomes the object of many RDF triples, and a node with a high subjectivity score becomes the subject of many RDF triples. They developed several kinds of Semantic Web systems in order to validate their technique and showed some experimental results verifying the applicability of their method to the Semantic Web. Despite their efforts, however, there remained some limitations which they reported in their paper. First, their algorithm is useful only when a Semantic Web system represents most of the knowledge pertaining to a certain domain. In other words, the ratio of links to nodes should be high, or overall resources should be described in detail, to a certain degree for their algorithm to properly work. Second, a Tightly-Knit Community(TKC) effect, the phenomenon that pages which are less important but yet densely connected have higher scores than the ones that are more important but sparsely connected, remains as problematic. Third, a resource may have a high score, not because it is actually important, but simply because it is very common and as a consequence it has many links pointing to it. In this paper, we examine such ranking problems from a novel perspective and propose a new algorithm which can solve the problems under the previous studies. Our proposed method is based on a class-oriented approach. In contrast to the predicate-oriented approach entertained by the previous research, a user, under our approach, determines the weights of a property by comparing its relative significance to the other properties when evaluating the importance of resources in a specific class. This approach stems from the idea that most queries are supposed to find resources belonging to the same class in the Semantic Web, which consists of many heterogeneous classes in RDF Schema. This approach closely reflects the way that people, in the real world, evaluate something, and will turn out to be superior to the predicate-oriented approach for the Semantic Web. Our proposed algorithm can resolve the TKC(Tightly Knit Community) effect, and further can shed lights on other limitations posed by the previous research. In addition, we propose two ways to incorporate data-type properties which have not been employed even in the case when they have some significance on the resource importance. We designed an experiment to show the effectiveness of our proposed algorithm and the validity of ranking results, which was not tried ever in previous research. We also conducted a comprehensive mathematical analysis, which was overlooked in previous research. The mathematical analysis enabled us to simplify the calculation procedure. Finally, we summarize our experimental results and discuss further research issues.