• Title/Summary/Keyword: Quay Crane

Search Result 71, Processing Time 0.027 seconds

터미널운영 효율성 향상을 위한 적용사례 연구

  • Cha, Sang-Hyeon;No, Chang-Gyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.94-96
    • /
    • 2012
  • 터미널의 경쟁력 제고, 터미널 생산성 향상이 중요한 요소라고 할 수 있다. 이러한 생산성에 영향을 줄 수 있는 요인은 다양하다. 그 중 야드 이송장비의 경우, 특정 선석크레인(QC, Quay Crane)에 야드 트랙터(YT, Yard Tractor)가 고정 할당되는 방식에서 다수 QC들의 작업을 처리하는 풀링 시스펨 방식으로 전환으로 터미널 생산성과 YT의 가용성을 높일 수 있다.

  • PDF

Anti-sway System for Automatic Container Terminal (자동화 컨테이너 터미널용 Anti-Sway 시스템)

  • 박경택;박찬훈;김두형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.428-431
    • /
    • 2002
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. But control algorithm of trolley speed is not practical in windy weather. In this paper, we are going to propose a new structure for anti-sway. This structure uses aux. ropes. The control strategy with auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And main schemes are introduced and explained briefly.

  • PDF

A Study on Loading/Unloading Methods for High-Speed Container Loading/Unloading System (고속 컨테이너 하역시스템의 하역방법에 관한 연구)

  • 박경택;김선호;김두형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.167-174
    • /
    • 1998
  • Recently several researches of high speed container ship and loading system are mainly accomplished in U.S.A. and Japan. Its shipping service is not realized but it is realized in near future. To effective use of the feature and efficiency of them, quay, loading/unloading. yard operation system, port management system and connection transport system must be well integrated and operated. Specially, loading /unloading speed of container crane is important for making effective use of them. To speed up loading/unloading system, RO-RO and LO-LO methods that are mostly exclusive system are studied on the container crane with special structure and mechanism to handle individual container or bundle of containers. In this paper these methods are shown. When new high speed loading system of container is desighed, the realistic constrains must be considered.

  • PDF

A Study on Estimation of the Productivity in Container Terminal (컨테이너 터미널에서의 하역생산성 추정에 관한 연구)

  • Jeon, Su-Min;Kim, Kap-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.3
    • /
    • pp.77-86
    • /
    • 2008
  • This study presents a method for estimating the productivity of the ship operation in container terminal. The productivity of the ship operation is influenced by the specifications of each piece of equipment and layouts of the terminal, and the operational strategies. The handling equipments considered in this study are QC(Quay Crane), RMGC (Rail mounted gantry crane), and Transporter (TR). The simulation experiments are conducted to estimate the QC productivity based on the change of the design factors.

  • PDF

Effects of Fleet-Angle on Sway Motions of a Cargo: Design Force Calculation (로프각이 화물의 진자운동에 미치는 영향: 설계력의 계산)

  • SHIN JANG-RYONG;PARK YONG-HYUN;GOH SUNG-HEE;HONG KEUM-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.77-86
    • /
    • 2005
  • Over the last 10 years, significant changes have taken place in the world of container shipping. The size and the speed of the quay-side crane have been increased considerably. As a result, the stiffness of a crane is decreased and the sway oscillation of cargo may become violent. The purpose of this paper is to determine the design force caused by the sway oscillation of the cargo, lifted by four ropes, with an initial fleet angle, and the governing equations of the lifting system for an anti-sway control system design.

Optimization of YT Dispatching Policy for Maximizing Quay Side Productivity in Container Terminals (컨테이너 터미널의 해측 생산성 극대화를 위한 YT 배차 전략 최적화)

  • Kim, Taekwang;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • One of the most important operational goals in container terminals is to maximize the quay side productivity by minimizing the turnaround times of the vessels, for which the operations of the quay cranes (QC) to load/unload containers onto/from the vessels should be conducted efficiently without delays. This paper suggests using a policy-based dispatching method for YTs (Yard Tractor) that deliver containers between QCs and the storage yard. The goal of using such a dispatching policy is to maximize the efficiency of the YT operation and accordingly to minimize the QC delays because of late arrivals of the YTs. In particular, in this paper, we modified the previously proposed policy for its application to real container terminal and verified the effect through simulation experiments using real terminal data.

Anti-Sway System of Container Transfer Crane for Automated Container Terminal : Part I - Basic Structure, Modeling and Control (자동화 컨테이너 터미널을 위한 컨테이너 트랜스퍼 크레인의 안티 스웨이 시스템;Part I - 기본 구조, 모델링, 제어)

  • 박찬훈;김두형;신영재;박경택
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1112-1118
    • /
    • 2004
  • Automated container terminals have been developed over the world years and many countries are interested in them because the amount of containers exported or imported is rapidly increasing. The conventional container terminals were not designed to handle this kind of heavily many containers. They would face many structural problems soon or later, although they have been managed to do well so far. One of the most important things in automated container terminal is the handing equipments able to transfer many containers efficiently. Those are maybe automated transfer cranes, automatic guided vehicles and automated quay-side cranes. The word 'automated' means the equipment is operated without drivers and those equipments are able to work without any interruption in working schedule. Through the researches on the conventional transfer cranes, we decided that the structure of conventional transfer cranes is not proper in automated container terminal and it is not possible to handle so many container in limited time. Therefore we have been studying on the proper structure of the automated container for past several years and a new type of transfer cranes has been developed. Design concept and control method of the new crane are introduced and experimental results are presented in this paper.his paper.

Optimized Design for Yard Operating System Layout of Automated Container Terminal (자동화항만의 야드 운영시스템 레이아웃 설계)

  • Hong, Dong-Hee;Chung, Tae-Choong
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.101-108
    • /
    • 2003
  • Construction of automated terminal it urgently demanded to gain the foundation of hub-port in north east Asia. Therefore we suggest an adequate operating system layout of automated terminal in Korea. In this paper the aim of automated terminal operating system is satisfied. four basic models are divided according to moving course of export and import cargo of each automated equipments, several input data are changed and analyzed dynamically by Trial and Error method, and then an optimized operating system model is selected, and designed for yard operating system layout on the basis of the selected model. Particularly, the productivity of automated port is up to the kind of automated equipments. However, because expense and present work process must be considered actually. In order to prevent confusion of the work, the method to optimize the present work and substitute prevent equipments and automated equipments was designed. It is a premise that ail the yard equipments described in this paper must be automatic except quay crane.

Sliding-Mode Control of Container Cranes (컨테이너크레인 시스템의 슬라이딩모드제어)

  • Lee Suk-Jae;Park Hahn;Hong Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.747-753
    • /
    • 2005
  • In this paper, as an anti-sway control strategy of container cranes, we investigate a variable structure control in which the moving load follows a given trajectory, whereas both the trolley and hoist controllers achieve their positioning problems. It is crucial, in an automated container terminal, that collisions should be avoided during the transference of containers from one place to another. It is also necessary, in the case of a quay crane, to select suitable loading and unloading trajectories of containers, so that possible collisions with surrounding obstacles are avoided. After a brief introduction of the mathematical model, a robust control scheme (i.e., a second-order sliding mode control that guarantees a fast and precise transference and a suppression of the resulted swing) is presented. Despite model uncertainties and unmodeled actuators dynamics, the swing suppression from the given trajectory is obtained by constraining the system motion on suitable sliding surfaces, which include both the desired path and the swing angle. The proposed controller has been tested with a laboratory-size pilot crane. Experimental results are provided.

A Genetic Algorithm for the Container Pick-Up Problem (컨테이너 픽업문제를 위한 유전자 알고리듬)

  • Lee, Shi-W.
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.362-372
    • /
    • 2011
  • Container pick-up scheduling problem is to minimize the total container handling time, which consists of the traveling distance and the setup time of yard cranes in a container yard. Yard cranes have to pick-up the containers which are stacked in the yard-bays to satisfy the work schedule requirement of quay crane, which loads and unloads containers on or from container ships. This paper allows the movement of multiple yard cranes among storage blocks. A mixed integer programming model has been formulated and a genetic algorithm (GA) has been proposed to solve problems of large sizes. Computational results show that the proposed GA is an effective method.