• Title/Summary/Keyword: Quaternary deposits

Search Result 135, Processing Time 0.023 seconds

A study on the physical properties of fine aggregates of Bonghwang-cheon in the Geum River Basin, Korea (금강유역의 봉황천에 부존하는 잔골재 물성연구)

  • Oh, Keun-Chang;Kim, Ju-Yong;Yang, Dong-Yoon;Lee, Jin-Young;Hong, Sei-Sun;Kim, Jeong-Chan
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • In this study we experiment on sand deposits (tine aggregates) taken from the old river-bed of the Bonghwang-cheon of Geum River Basin, and evaluate physical properties of fine aggregates in comparison to the KS quality regulation. As a result of experimentation, particle size of fine aggregates is generally smaller in the downstream area than in the upstream area. In addition, physical properties of the fine aggregates tend to depend on the bedrock type. Physical properties of fine aggregates show a strong positive correlation with particle size of old river-bed sediments. Finally, the general physical properties of fine aggregates are conformable to the KS quality regulation, except density and proportion of materials finer than $75{\mu}m$.

  • PDF

The Last Interglacial Sea Levels Estimated from the Morphostratigraphic Comparison of the Late Pleistocene Fluvial Terraces in the Eastern Coast of Korea (한국 동해안에 있어서 최종간빙기의 구정선고도 연구 후기 경신세 하성단구의 지형층서적 대비의 관점에서)

  • 최성길
    • The Korean Journal of Quaternary Research
    • /
    • v.7 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The estimation of the Last Interglacial sea level was made by using the thalassostatic terrace which had been developed in the lower reach of Namdaechon river in Kangneung, eastern coastal area of Korea. The fluvial terraces, which have been developed since late Pleistocene, were investigated. The main findings were as follows; 1) That Kangneung terrace I had been formed in the climax period of the Last Interglacial (Oxygen isotope stage 5e) was revealed. It was estimated that Kangneung terrace II had been formed during a certain warmer period between the climax period of the Last Interglacial and the early Last Glacial(probably Oxygen isotope stage 5c or 5a). 2) Being judged from the relative heights of the Kangneung terrace I and II, the sea levels of the formation periods of these terraces were estimated to have been relatively 17~20m and l0m higher than the present sea level, respectively. 3) The formation periods of the Wangsan terrace I and II were supposed to be the early and late Last Glacial respectively, being judged from the following 3 details ; a) the characteristics of the terrace deposits, b) the relation Wangsan terrace II to the buried valley floor, and c) the cross phenomena of the above two terraces to the Kangneung terraces. 4) The formation period of the pseudogleyed red soil in the Kangneung terrace I was estimated to be the middle or late period of the Last Interglacial.

  • PDF

Geochemical Characteristics of Surface Sediments in the Eastern Part of the Yellow Sea and the Korean West Coast (황해 동부 대륙붕과 한반도 서해안 표층퇴적물의 지구화학적 특성)

  • 조영길;이창복;박용안;김대철;강효진
    • The Korean Journal of Quaternary Research
    • /
    • v.7 no.1
    • /
    • pp.69-91
    • /
    • 1993
  • A total of 76 surface sediment samples, collected from the Korean west coast and the eastern Yellow Sea areas, were analyzed for their elemental composition in order to understand the geochemical characteristics of these deposits. The analyzed elements included 9 major elements (Al, Fe, Na, K, Mg, Ca, Ti, P, Mn), 8 minor elements (Sr, Ba, V, Cr, Co, Ni, Cu, Zn), organic carbon and calcium carbonate. Contents of most analyzed elements, excluding K and Ba, were generally low compared to those of average crust. Contents of most elements, except K and Ca, also correlated with sediment grain size, though the degree of relationship varied widely from one element to another. For fine-grained sediments, a distinction could be made between those in the central Yellow Sea and those in the Keum Estuary based on their characteristic elemental composition: the former were rich in Fe, Na, K, Mg, Ca and V, and the latter in Mn, Co and Ni. The element/aluminium ratios, on the other hand, showed that the central Yellow Sea muds were enriched in Fe, Mg, V, Ni, Cu and Zn and depleted in K, Mn, Ba and Sr relative to the mud located near the Korean Peninsula. Based on the analysis of these results, as well as of the influences of particular mineral phases or pollution effects, we could suggest geochemical criteria which can be used in distinguishing muds from the two different sources, the Keum River and the Yellow River: the former by the higher Mn content and the latter by the higher Mg and V contents, relative to each other.

  • PDF

The Development of the Hantan River Basin, Korea and the Age of the Sediment on the top of the Chongok Basalt (한탄강유역의 발달과정과 전곡현무암 위의 퇴적물의 연대)

  • Bae, Kidong
    • The Korean Journal of Quaternary Research
    • /
    • v.3 no.1
    • /
    • pp.87-101
    • /
    • 1989
  • The development of the Hantan river basin can be divided into three stages. The first stage include the ancient Hantan channel system prior to the Chongokni basalt which yield dates of about 0.6 mya from the K/Ar dating method. During this period the Baekuyri formation was formed. The Baekuyri formation is widely observed under the Chongokni basalt along the current river system. The second stage is the period when stream channels stayed on the top of the basalt plateau. Aggradation and deggradation were continued by meandering and braiding channel systems until major stream channel was formed. The currently remaining deposit on the top of the basalt was formed by lacustrine and fluvial systems in this period. During this period Pleistocene hominid was present on edge of water and flood plain and left Paleolithic material. This period was begun at the time of the final basalt flow dated about 300,000 BP. The third stage is designed for the time when the Hantan river channel was dropped down to a level from which the channel could not influence the top of the basalt any more No more deposit could be formed but erosion by surface water has been continued on the top of the basalt since then. The dropping of the Hantan river channel was probably not very long after the final flow of the basalt. Because of frost action and heavy concentrated precipitation in the basin area along with blocky and clumnar joint structure of the basalt, erosional process of the basalt is believed to have been carried out within a relatively short time. The lowering of the Hantan river channel was probably completed in a cycle of major fluctuation of world cimate. Also, the redclay on the top of the basalt is believed to have been formed during a warm period around 200,000 BP, which accords with the climatic change suggested above fair1y well. The Paleolithic materials in tile deposits fell accordingly into approximately same time period.

  • PDF

Analysis of Paleo Sedimentary Environment of Gochang Coast Using Grain Size Distribution Characteristics (입도분포 특성을 기반으로 한 고창 연안의 과거 퇴적환경 분석)

  • Han, Min;Yang, Dong-Yoon;Park, Chanhyeok
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.43-55
    • /
    • 2018
  • This study aimed to identify different sedimentary environments of Gochang coast according to geomorphic conditions of each bore hole. To achieve the aim, this study utilized the classification of sedimentary environmental conditions of surface sediment, which was based on grain size distribution characteristics.In other words, three sedimentary environmental conditions ofsandy flat + sand beach, coastal sand dune and weathered bedrock soil, which were distinguished based on grain size distribution characteristics of mean-sorting for surface sediments, were applied to the sediments of bore holes. Four sedimentary environments could be identified in Gochang coast. First, the lake sedimentary environment originated from terrestrial sediments seems to have been dominated by weathered bedrock soil that the surface flow has deposited in a coastal wetland or a boundary, which is affected by the sea. Second, the lake sedimentary environment that is little affected by coastal sand dunes is located at the center of a valley, which is connected to the land, and the dune slack of Saban-ri. The surface flow of weather bedrock soil is the main source of deposits. However, there seems to have been a temporary influence of the sea. Third, the lake sedimentary environment that is strongly affected by coastal sand dunes is located at the dune slack of Yeongjeong-ri. This environment shows traces of a change from a coastal sand dune into the dune slack. Finally, the coastalsand dune sedimentary environment, which wasinvestigated by boring the current coastal sand dune, shows a temporary influence of the land but seems to have maintained the overall stability. Consequently, this study demonstrated that the grain size distribution characteristics of the present surface sediments could be effectively applied to identify the sedimentary environments of the paleo bore hole sediments. In addition, the paleo change of sedimentary environment could also be identified in many places of Gochang coast. If the results of this study are combined with the age dating and geochemical analysis in future works, the paleo environmental change in Gochang coast will be restored more precisely.

Occurrences of Hot Spring and Potential for Epithermal Type Mineralization in Main Ethiopian Rift Valley (주 에티오피아 열곡대 내 온천수의 산출특성 및 천열수형 광상의 부존 잠재성)

  • Moon, Dong-Hyeok;Kim, Eui-Jun;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.267-278
    • /
    • 2013
  • The East African Rift System(EARS) is known to be hosted epithermal Au-Ag deposits, and the best-known example is Main Ethiopian Rift Valley(MER) related to Quaternary bimodal volcanism. Large horst-graben system during rifting provides open space for emplacement of bimodal magmas and flow channel of geothermal fluids. In recent, large hydrothermally altered zones(Shala, Langano, and Allalobeda) and hot spring related to deeply circulating geothermal water have been increasing their importance due to new discoveries in MER and Danakil depression. The hot springs in Shala and Allalobeda occur as boiling pool and geyser on the surface, whereas some areas didn't observe them due to decreasing ground water table. The host rocks are altered to quartz, kaolinite, illite, smectite, and chlorite due to interaction with rising geothermal water. The hot springs in MER are neutral to slightly alkaline pH(7.88~8.83) and mostly classified into $HCO_3{^-}$ type geothermal water. They are strongly depleted in Au, and Ag, but show a higher Se concentration of up to 26.7 ppm. In contrast, siliceous altered rocks around hot springs are strongly enriched in Pb(up to 33 ppm, Shala), Zn(up to 313 ppm, Shala), Cu(up to 53.1 ppm, Demaegona), and Mn(up to 0.18 wt%t, Shala). In conclusion, anomalous Se in hot spring water, Pb, Zn, Cu, and Mn in siliceous altered rocks, and new discoveries in MER have been increasing potential for epithermal gold mineralization.

High-resolution Echo Facies Analysis of Sedimentary Deposits around Dok-Island Volcanoes (독도 화산군 주변 퇴적층의 고해상 탄성파상 분석)

  • Lee, Yong-Kuk;Han, Sang-Joon;Yoon, Seok-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • This study presents Quaternary sedimentation pattern around Dok-Island volcanoes (Dok Island and Dok Seamount), based on analysis of high-resolution (chirp) echo characters. Echo facies If, showing sharp, continuous bottom echo without subbottom reflectors, is recorded mainly from the flat tops of the volcanoes. This facies indicates sands and gravels (re) deposited by shallow marine processes. Echo facies IIA in the basin floor and basal slopes of the volcanoes and Oki Bank is characterized by semi-prolonged bottom and several parallel subbottom echoes. This facies reflects hemipelagic settling with intermittent influences of turbidity currents in the slope areas. Echo facies IIC is recorded from acoustically-transparent debrite masses on the basal slopes of the volcanoes and Oki Bank. Echo facies IIIA is characterized by irregular hyperbolic echoes in the slope areas of the volcanoes. It suggests hard rock basement or irregular volcanic edifices. Echo facies IIIC shows regularly-overlapping hyperbolic bottom echoes. It is interpreted to represent rock-fall deposits (talus) accumulated in the mid-slope area. Echo characters and topography suggest that the tops of Dok-Island volcanoes were flattened and lowered by shallow-marine erosional processes. The eroded sediments were transported to and deposited in the base of slope and basin plain mainly by debris flows and turbidity currents along submarine canyons and valleys.

  • PDF

Late Quaternary stratigraphy and sea-level change in the tidal flat of Gomso Bay, West Coast of Korea (한국 서해안 곰소만 조간대의 제 4기 층서와 해수면 변화)

  • 장진호;박용안
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.1 no.2
    • /
    • pp.59-72
    • /
    • 1996
  • The stratigraphy of the Gomso-Bay tidal flat consists of basement, preHolocene oxidized unit, and Holocene tidal sequence in ascending order. The oxidized unit is a yellowish brown stiff mud of the last stadial (or subglacial) stage before 12,000 yr B.P. This yellowish brown preHolocene unit does not contain any marine fossils, but contains plant roots, plant fragments, and also vertical and horizontal microfractures indicating soil-formation when exposed. It is regarded as interfluve deposits. The Holocene tidal sequence is composed of lower mud facies (upper-flat muds), upper sand and muddy sand facies (middle to lower-flat sands). This coarsening-upward and retrograding pattern of Holocene tidal deposits reflects a Holocene sea-level rise. The plots of $\^$14/C-age versus depth of dated samples (peats and shells) show that the sea level of 7,000 yr B.P. was located about 6.5 m below the present mean sea level, and the sea levels of 4,000 yr B.P. and 2,000 yr B.P. were also situated about 3 m and 2.5 m below the present mean sea level, respectively.

A Study on Geology and Mineralization in San Luis Potosi, Mexico (멕시코 산 루이스 포토시주의 지질 및 광화작용에 대한 고찰)

  • Oh, Il Hwan;Heo, Chul Ho
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.163-176
    • /
    • 2019
  • The Potosinian geological basement in central Mexico is comprised of the Upper Paleozoic metamorphic rocks, which crop out on the Sierra de Catorce nucleus located in the northeastern part of the state. The sedimentary sequence that covers unconformably the Paelozoic basement is represented by an Upper Triassic marine sedimentary sequence, correlating to the Zacatecas Formation and the Upper Triassic continental Huizachal Formation red beds, which in turn are covered either by La Joja Formation Jurassic red beds or by Upper Jurassic marine sediments. This sequence is overlain by the conformable Cretaceous calcareous marine sedimentary rocks in all the state of San Luis Potosi. The Cenozoic sequence unconformably covers some of the aforementioned rocks and is represented by undifferentiated volcanic rocks as well as by marine clastic rocks. The existing intrusive igneous rocks are felsic to intermediate composition, and they intrude the metamorphic basement and sedimentary rocks. Conglomerates with evaporitic sediments were deposited during the Pleistocene. The Quaternary sequence includes basalt flows, piedmont deposits, alluvium, and occasionally evaporites and caliche layers. In the state of San Luis Potosi, a great diversity of mineral deposit types is known as both metallic and nonmetallic. The host rocks of these deposits vary from one another including formations that represent from Paleozoic up to Tertiary. The mineralization age corresponds approximately to Tertiary (75%), and is mainly epigenetic. Conclusively, the data on geology and mineralization in San Luis Potosi, Mexico are helpful to predict a hidden ore body and select promising mineralized zone(s) when the domestic company makes inroads in the mining sector of Mexico.

The Changing Process of the Tidal Landforms in Hampyeung Bay, Southwest Korea (함평만의 간석지 해안지형의 변화)

  • KIM, Nam-Shin;LEE, Min-Boo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.223-233
    • /
    • 2011
  • The aims of this study is about distribution characteristics of tidal coastal landforms, and that changing process in the Hampyeung Bay, which has a semi-enclosed bay like basin shape without inflow of stream, the mouth of open sea is narrow and forms with wide ends toward inland sea. The source of deposits are moved materials by tidal currents and from coastal slopes. Main landform elements of study area consist of tidal flat, tidal channels, intertidal sand bar, sea cliffs, and sea terrace. Tidal flats is classified with mud flat and mixed flat by grain size composition. Mud flats have developed at the shoreline area that tidal flat is closed to the continuity of gentle slope, and mixed flat developed at the foot of the sea cliffs and sea terraces. Quaternary deposits were identified in the coastal materials sedimented by the sea-level change. According to the analysis of grain size composition during last ten years, sands and silt has increased 2% and 6% respectively, clay has been decreased by 9%. The concaved tidal flats are colonized by salt plants. Areal changes of salt plants expanded near four times from 2.4km2 at the year 2001 to 9.3km2 at the year 2009. During the same periods, mean grain size became coarser from 6.5φ to 4.5φ at the salt plants area.