• 제목/요약/키워드: Quasi-static lateral load

검색결과 49건 처리시간 0.021초

충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구 (Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI))

  • Lee, J.;Kong, C.;Soutis, C.
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.129-134
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests, CAI strength and open hole compressive strength tests using 3mm thick composite plates ($[45/-45/0/90]_{3s}$ - IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels (between 5.4 J and 18.7 J) fallow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. From the CAI strength and open hole compressive strength tests, it is identified that the failure behaviour of the specimens was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths are in good agreement with the measured open hole compressive strengths, considering the impact damage site as an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

  • PDF

Failure behaviors of C/C composite tube under lateral compression loading

  • Gao, Yantao;Guan, Yuexia;Li, Ke;Liu, Min;Zhang, Can;Song, Jinliang
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1822-1827
    • /
    • 2019
  • Mechanical responses and failure behaviors of advanced C/C composite tube are very important for structural component design in nuclear reactor. In this study, an experimental investigation was conducted to study mechanical properties of C/C composite tube. Quasi-static compression loading was applied to a type of advanced composite tube to determine the response of the quasi-static load displacement curve during progressive damage. Acoustic emissions (AE) signals were captured and analyzed to characterize the crack formation and crack development. In addition, the crack propagation of the specimens was monitored by imaging technique and failure mode of the specimen was analyzed. FEM is appled to simulate the stress distribution. Results show that advanced C/C composite tube exhibits considerable energy absorption capability and stability in load-carrying capacity.

Study on lateral behavior of digging well foundation with consideration of soil-foundation interaction

  • Wang, Yi;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Lu, Jinhua;Ma, Huajun
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.15-28
    • /
    • 2021
  • Digging well foundation has been widely used in railway bridges due to its good economy and reliability. In other instances, bridges with digging well foundation still have damage risks during earthquakes. However, there is still a lack of knowledge of lateral behavior of digging well foundation considering the soil-foundation interaction. In this study, scaled models of bridge pier-digging well foundation system are constructed for quasi-static test to investigate their lateral behaviors. The failure mechanism and responses of the soil-foundation-pier interaction system are analyzed. The testing results indicate that the digging foundations tend to rotate as a rigid body under cyclic lateral load. Moreover, the depth-width ratio of digging well foundation has a significant influence on the failure mode of the interaction system, especially on the distribution of foundation displacement and the failure of pier. The energy dissipation capacity of the interaction system is discussed by using index of the equivalent viscous damping ratio. The damping varies with the depth-width ratio changing. The equivalent stiffness of soil-digging well foundation-pier interaction system decreases with the increase of loading displacement in a nonlinear manner. The absolute values of the interaction system stiffness are significantly influenced by the depth-width ratio of the foundation.

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

반복 횡하중을 받는 원형 철근콘크리트 기둥의 Helical Bar 보강효과에 대한 연구 (Study on Reinforcement Effect of Circular RC Columns by Helical Bar Under Cyclic Lateral Load)

  • 김성겸;박종권;한상희;김병철;장일영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.48-58
    • /
    • 2014
  • 본 연구에서는 1992년 도로교설계기준의 내진설계도입 이전 규정에 따라 설계, 시공된 교각의 축소 모델을 실험체로 제작하여 원형기둥의 변위비에 따른 횡하중을 변위제어 방식으로 입력하여 준정적 방법을 통해 실험을 실시하였다. 연구에 적용한 보강재는 성능을 향상시킨 무기계 합금강인 Helical Bar로써 원형기둥 외부에 보강 후 실내실험을 통하여 파괴거동, 하중-변위 관계, 연성도 평가 및 에너지 평가를 실시하였다. 실험변수로는 위험단면 내에서 나선으로 보강한 보강재의 단면력의 크기와 나선보강의 간격, 보강형태로 두었으며, 준정적 실험을 통해 보강성능의 차이와 효과를 확인하였다. 실험결과 보강대상 부재의 성능에 따라 적절한 보강재의 단면력 크기결정과 보강간격 및 형식의 선정이 필요하며 기계적 보강재뿐만 아니라 고강도 콘크리트 피복으로의 치환으로도 보강성능이 향상됨을 확인할 수 있었다.

충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구 (Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI))

  • Lee, J;Kong, C;Soutis C.
    • Composites Research
    • /
    • 제16권4호
    • /
    • pp.66-73
    • /
    • 2003
  • 충격 시나 충격 후 압축 할 때 구조용 복합재의 거동에 대한 중요성은 충격 손상과 충격후압축강도 예측에 대한 해석적 모델을 개발하기 위해 간과될 수 없을 것이다. 본 연구는 3mm두께의 $[45/-45/0/90_{3s}$ - IM7/8552린복합재판들을 이용하여 준정적횡하중시험, 저속충격시험, 충격후압축강도시험 및 구멍이 있는 시편의 압축강도시험 등을 수행한 후 이로 부터 발견된 결과들을 제시하였다 준정적횡하중과 충격하중시험에서 발생한 손상면적들이 서로 유사하며. 또한 5.4 J 부터 18.7 J 까지의 다양한 에너지준위들을 가진 낙하충격 시험 곡선들과 정적시험 곡선들도 서로 유사하다는 결론을 얻었으며. 이때 주어진 에너지 준위에서 정적과 충격시의 최대하중 값들이 잘 일치한다는 사실을 확인 하였다. 충격 후 압축시험에 의한 시편들의 파괴거동이 압축하중하의 구멍이 있는 적층판에서 관찰된 파괴거동과 매우 유사하과는 사실도 확인 되었다. 충격손상 후 잔류강도는 충격손상 등가구멍이 있는 경우의 시편에서 측정된 압축 강도와 잘 일치 하였다. 이와 같은 실험적 연구 결과들은 충격손상면적과 충격후압축강도의 예측에 대한 단순만 해석모델들이 이들 시험결과들로부터 관찰된 파괴기구를 기초로 하여 개발될 수 있음을 제시하고 있다.

Seismic upgrading of reinforced concrete frames with steel plate shear walls

  • Korkmaz, Hasan H.;Ecemis, Ali S.
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.473-484
    • /
    • 2017
  • The objective of this paper is to report on a study of the use of unstiffened thin steel plate shear walls (SPSWs) for the seismic performance improvement of reinforced concrete frames with deficient lateral rigidity. The behaviour of reinforced concrete frames during seismic activities was rehabilitated with an alternative and occupant-friendly retrofitting scheme. The study involved tests of eight 1/3 scale, one bay, two storey test specimens under cyclic quasi-static lateral loadings. The first specimen, tested in previous test program, was a reference specimen, and in seven other specimens, steel infill plates were used to replace the conventional infill brick or the concrete panels. The identification of the load-deformation characteristics, the determination of the level of improvement in the overall strength, and the elastic post-buckling stiffness were the main issues investigated during the quasi-static test program. With the introduction of the SPSWs, it was observed that the strength, stiffness and energy absorption capacities were significantly improved. It was also observed that the experimental hysteresis curves were stable, and the composite systems showed excellent energy dissipation capacities due to the formation of a diagonal tension field action along with a diagonal compression buckling of the infill plates.

가압고정 기계적이음을 활용한 프리캐스트 콘크리트 구조물의 준정적 및 진동대 실험 (Quasi-Static and Shaking Table Tests of Precast Concrete Structures Utilizing Clamped Mechanical Splice)

  • 성한석;안성룡;박시영;강현구
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.37-47
    • /
    • 2023
  • A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames' maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.

장대레일궤도의 온도좌굴에 영향을 미치는 매개변수 연구 (Parametric Study on Thermal Buckling of CWR Tracks)

  • 최동호;김호배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.295-302
    • /
    • 2001
  • The lateral stability of curved continuous welded rail (CWR) is studied fur buckling prevention. This study includes the influences of vehicle induced loads on the thermal buckling behavior of straight and curved CWR tracks. quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deformation induced by wheel loads of vehicle. Parametric numerical analyses are performed to calculate the upper and lower critical buckling temperatures of CWR tracks. The parameters include track lateral resistance, track curvature, longitudinal stiffness, tie-ballast friction coefficient, axle load, truck center spacing, and the ratio of lateral to vertical vehicle load. This study provides a guideline for the improvement or stability for dynamic buckling in on tracks.

  • PDF

Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading

  • Chen, Jiye;Zhuang, Yong;Fang, Hai;Liu, Weiqing;Zhu, Lu;Fan, Ziyan
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.133-148
    • /
    • 2019
  • This paper reports on the energy absorption characteristics of a lattice-web reinforced composite sandwich cylinder (LRCSC) which is composed of glass fiber reinforced polymer (GFRP) face sheets, GFRP lattice webs, polyurethane (PU) foam and ceramsite filler. Quasi-static compression experiments on the LRCSC manufactured by a vacuum assisted resin infusion process (VARIP) were performed to demonstrate the feasibility of the proposed cylinders. Compared with the cylinders without lattice webs, a maximum increase in the ultimate elastic load of the lattice-web reinforced cylinders of approximately 928% can be obtained. Moreover, due to the use of ceramsite filler, the energy absorption was increased by 662%. Several numerical simulations using ANSYS/LS-DYNA were conducted to parametrically investigate the effects of the number of longitudinal lattice webs, the number of transverse lattice webs, and the thickness of the transverse lattice web and GFRP face sheet. The effectiveness and feasibility of the numerical model were verified by a series of experimental results. The numerical results demonstrated that a larger number of thicker transverse lattice webs can significantly enhance the ultimate elastic load and initial stiffness. Moreover, the ultimate elastic load and initial stiffness were hardly affected by the number of longitudinal lattice webs.