• Title/Summary/Keyword: Quasi-static error

Search Result 35, Processing Time 0.023 seconds

Error Performance of Serially Concatenated Space-Time Coding

  • Altunbas, Ibrahim;Yongacoglu, Abbas
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.135-140
    • /
    • 2003
  • In this paper, we investigate the error performance of a serially concatenated system using a nonrecursive convolutional code as the outer code and a recursive QPSK space-time trellis code as the inner code on quasi-static and rapid Rayleigh fading channels. At the receiver, we consider iterative decoding based on the maximum a posteriori (MAP) algorithm. The performance is evaluated by means of computer simulations and it is shown that better error performance can be obtained by using low complexity outer and/or inner codes and the Euclidean distance criterion based recursive space-time inner codes. We also obtain new systems with large number of trasmit and/or receive antennas providing good error performance.

Impact of Channel Variations and Channel Estimation Errors on the Error Performance of Convolutional Coded STBC Systems (길쌈 부호화 시공간 블록 부호 시스템의 오류 성능에 대한 채널 변화 및 채널 추정 오류의 영향)

  • Yun, Eunsik;Kim, Sun-Hyung;Park, Sangjoon;Kang, Byeong-Gwon
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.231-237
    • /
    • 2018
  • This paper investigates the impact of the channel variations and channel estimation errors on the error performance of convolutional coded STBC systems. We consider the orthogonal Almouti STBC and the quasi-orthogonal Jafarkhani STBC, and the error performance of the convolutional coded STBC system is investigated according to the channel variation and channel estimation error via numerical simulations. Simulation results show that, if the channel variation speed is slow, time diversity effects improve the error performance compared to the static-channel cases. However, if the channel variation speed is fast, unlike ZF or MMSE detection, the conventional STBC detection has the significant performance degradation especially with the quasi-orthogonal Jafarkhani STBC. Further, the error performance of the system is significantly degraded as the channel estimation errors become stronger, regardless of the detection scheme and channel variation speed.

Analysis of Transmission-line Discontinuities by 3-dimensional Finite Element Method (3차원 유한요소법에 의한 도파로의 불연속 특성 해석)

  • 이상수;안창회;정봉식;이수영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.5
    • /
    • pp.355-360
    • /
    • 1991
  • A transmission-line discontinuities are analyzed by Finite Element Method. We use quasi-static approxmation to determine the circuit parameters of discontinuities. Delta formulation is introduced so that the cancellation error of potential calculation is reduced. To verify this method, capacitance of coaxial cable with discontinuous and coupling capacitances are calculated by modal expansion. This approach can be used for arbitrary discontinuous conducting patterns of microwave devices.

  • PDF

Non-Quasi-Static RF Model for SOI FinFET and Its Verification

  • Kang, In-Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.160-164
    • /
    • 2010
  • The radio frequency (RF) model of SOI FinFETs with gate length of 40 nm is verified by using a 3-dimensional (3-D) device simulator. This paper shows the equivalent circuit model which can be used in the circuit analysis simulator. The RMS modeling error of Y-parameter was calculated to be only 0.3 %.

Availability Evaluation of Quasi Static RTK Positioning for Construction of High Rise Buildings and Civil Structures (고가(高架)구조물의 정위치 시공을 위한 준스태틱RTK 측위의 적용성 실험)

  • Kim, In-Seop
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.119-126
    • /
    • 2011
  • During precise survey on the top of High rise buildings and civil structures, optical surveying equipments like a Total Station are not recommended to use because of some reasons that uneasier alignment with reflectors located at the top of building, increasing error depends on increasement of observation distance and unavailable dynamic positioning etc. Recently various GPS positioning methods have been applied to this job however almost of them are post-processing method which is required much longer time during for whole process includes stake-out, cross checking, fixing positions and final inspections. Therefore, in this study, we applied with RTK surveying system which allows stake-out and inspection in realtime to avoid delaying of construction schedule and also applied with Quasi Static RTK measurement and network adjustment to get a high accuracy within a few millimeters in structure positioning to achieve a successful management for process and quality control of the project. As a result, very high accurate surveying for structures within approx. 2mm in realtime has been achieved when surveyor conduct a network adjustment using least square method for 4 base lines created by Quasi Static RTK data and we expect this method will be applied to construction survey for high rise buildings and civil structures in the future.

BER Performance Analysis of Linear Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation in Quasi Static Rayleigh Fading Channel (QAM 변조방식을 갖는 선형 직교 시공간 블록 부호의 준정지 레일리 페이딩 채널에서의 비트 오율 성능 분석)

  • Kim Sang-Hyo;Yang Jae-Dong;No Jong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.575-581
    • /
    • 2006
  • In this paper, we first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of orthogonal space-time block codes (OSTBC). Using the ODSEF and the general bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon, the exact closed form expressions for the BEP of linear OSTBCs with QAM in slow-varying Rayleigh fading channel are derived.

Analysis of Practical Dynamic Force of Structure with Inverse Problem (역문제에 의한 구조물의 실동하중 해석)

  • 송준혁;노홍길;김홍건;유효선;강희용;양성모
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • Vehicle structures are composed of many substructure connected to one another by various types of mechanical joints. In vehicle engineering it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. It is difficult to obtain the accurate load history of specified positions because of the errors such as modeling, measurement and etc. In the beginning of design exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic force determination is developed by the combination of the principal stresses of F. E. Analysis and experiment. Least square pseudo inverse matrix is adopted to obtain in inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these non. Finally, to verify the proposed procedure, a bus is analyzed. This measurement and prediction technology can be extended to the structural modification of any geometric shape in complex structure.

Fluid Infiltration Effect on Breakdown Pressure in Laboratory Hydraulic Fracturing Tests

  • Diaz, Melvin B.;Jung, Sung Gyu;Lee, Gyung Won;Kim, Kwang Yeom
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.389-399
    • /
    • 2022
  • Observations on the influence of the fluid infiltration on the breakdown pressure during laboratory hydraulic fracturing tests, along with an analysis of the applicability of the breakdown pressure prediction for cylindrical samples using Quasi-static and Linear Elastic Fracture Mechanics approaches were carried out. These approaches consider fluid infiltration through the so-called radius of fluid infiltration or crack radius, a parameter that is not a material property. Two sets of tests under pressurization rate controlled and injection rate controlled tests were used to evaluate the applicability of these methods. The difficulty of the estimation of the radius of fluid infiltration was solved by back calculating this parameter from an initial set of tests, and later, the obtained relationships were used to predict breakdown pressures for a second set of tests. The results showed better predictions for the injection rate than for the pressurization rate tests, with average errors of 3.4% and 18.6%, respectively. The larger error was attributed to differences in the testing conditions for the pressurization rate tests, which had different applied vertical pressures. On the other hand, for the tests carried out under constant injection rate, the Linear Elastic Fracture Mechanics solution reported lower errors compared to the Quasi-static solution, with values of 3% and 3.8%, respectively. Moreover, a sensitivity analysis illustrated the influence of the radius of fluid penetration or crack radius and the tensile strength on the breakdown pressure, suggesting a need for a careful estimation of these values. Then, the calculation of breakdown pressure considering fluid infiltration in cylindrical samples under triaxial conditions is possible, although larger data sets are desirable to validate and derive better relations.

Adaptive Crack Propagation Analysis with the Element-free Galerkin Method (Element-free Galerkin 방법을 이용한 적응적 균열진전해석)

  • 최창근;이계희;정흥진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.84-91
    • /
    • 2001
  • In this study, the adaptive analysis procedure of crack propagation based on the element-free Galerkin(EFG) method is presented. The adaptivity analysis in quasi-static crack propagation is achieved by adding and/or removing the node along the background integration cell that are refined or recovered according to the estimated error. These errors are obtained basically by calculating the difference between the values of the projected stresses and original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples. The results of these examples show the efficiency and accuracy of proposed scheme in crack propagation analysis.

  • PDF

Space-Time Block Coding Techniques for MIMO 2×2 System using Walsh-Hadamard Codes

  • Djemamar, Younes;Ibnyaich, Saida;Zeroual, Abdelouhab
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Herein, a new space-time block coding technique is proposed for a MIMO 2 × 2 multiple-input multiple output (MIMO) system to minimize the bit error rate (BER) in Rayleigh fading channels with reduced decoding complexity using ZF and MMSE linear detection techniques. The main objective is to improve the service quality of wireless communication systems and optimize the number of antennas used in base stations and terminals. The idea is to exploit the correlation product technique between both information symbols to transmit per space-time block code and their own orthogonal Walsh-Hadamard sequences to ensure orthogonality between both symbol vectors and create a full-rate orthogonal STBC code. Using 16 quadrature amplitude modulation and the quasi-static Rayleigh channel model in the MATLAB environment, the simulation results show that the proposed space-time block code performs better than the Alamouti code in terms of BER performance in the 2 × 2 MIMO system for both cases of linear decoding ZF and MMSE.