• Title/Summary/Keyword: Quasi-static and dynamic test

Search Result 90, Processing Time 0.025 seconds

Seismic Performance of Concrete-Filled Steel Piers Part II: Pseudo-Dynamic Test and Residual Seismic Capacity (강합성교각의 내진성능평가 Part II: 유사동적실험 및 잔류내진성능 평가)

  • 조창빈;서진환;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 2002
  • Ductile behavior and strength of concrete-filled steel(CFS) piers was supported by many quasi-static cyclic loading tests. This test method, however, only estimates the member′s deformation capacity under escalating and repetitive displacement and ignores dynamic and random aspects of an earthquake load. Therefore, to understand complete seismic behavior of the structure against an earthquake, dynamic tests such as shaking table test and pseudo-dynamic tests are required as well as quasi-static tests. In this paper, following "Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loadint Test", the seismic behavior of CFS and steel piers designed for I-Soo overpass in Seoul in investigated by the pseudo-dynamic test. In addition, the residual strength of both piers after an earthquake is estimated by the quasi-static test. The results show that both piers have satisfactory ductility and strength against well-known EI Centro earthquake although the CFS pier has better strength and energy dissipation than the steel pier.

Laminate composites behavior under quasi-static and high velocity perforation

  • Yeganeh, E. Mehrabani;Liaghat, G.H.;Pol, M.H.
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.777-796
    • /
    • 2016
  • In this paper, the behavior of woven E-glass fabric composite laminate was experimentally investigated under quasi-static indentation and high velocity impact by flat-ended, hemispherical, conical (cone angle of $37^{\circ}$ and $90^{\circ}$) and ogival (CRH of 1.5 and 2.5) cylindrical perforators. Moreover, the results are compared in order to explore the possibility of extending quasi-static indentation test results to high velocity impact test results in different characteristics such as perforation mechanisms, performance of perforators, energy absorption, friction force, etc. The effects of perforator nose shape, nose length and nose-shank connection shapes were investigated. The results showed that the quasi-static indentation test has a great ability to predict the high velocity impact behavior of the composite laminates especially in several characteristics such as perforation mechanisms, perforator performance. In both experiments, the highest performance occurs for 2.5 CRH projectile and the lowest is related to blunt projectiles. The results show that sharp perforators indicate lower values of dynamic enhancement factor and the flat-ended perforator represents the maximum dynamic enhancement factor among other perforators. Moreover, damage propagation far more occurred in high velocity impact tests then quasi-static tests. The highest damage area is mostly observed in ballistic limit of each projectile which projectile deviation strongly increases this area.

Finite Element Modeling of Low Density Polyurethane Foam Material (저밀도 폴리우레탄 포옴재료의 유한요소 모델링)

  • 김원택;최형연
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.183-188
    • /
    • 1996
  • The compressive stress-strain response of Low Density Polyurethane foam material is modeled using the finite element method. A constitutive equation which include experimental constants based on quasi-static and dynamic uniaxial compression test is proposed. Impact test with different impactor masses and velocities are performed to verify the proposed model. The comparison between impact test and finite element analysis shows good agreements.

  • PDF

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Quasi-Static and Dynamic Deformation Behavior of STS304- and Ta-fiber-reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 STS304와 Ta 섬유 강화 Zr계 비정질 복합재료의 준정적 및 동적 변형거동)

  • Kim, Yongjin;Shin, Sang Yong;Kim, Jin Sung;Huh, Hoon;Kim, Ki Jong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.477-488
    • /
    • 2010
  • Zr-based amorphous alloy matrix composites reinforced with stainless steel (STS) and tantalum continuous fibers were fabricated without pores or defects by a liquid pressing process, and their quasi-static and dynamic deformation behaviors were investigated by using a universal testing machine and a Split Hopkinson pressure bar, respectively. The quasi-static compressive test results indicated that the fiberreinforced composites showed amaximum strength of about 1050~1300 MPa, and its strength maintained over 700 MPa until reaching astrain of 40%. Under dynamic loading, the maximum stresses of the composites were considerably higher than those under quasi-static loading because of the strain-rate hardening effect, whereas the fracture strains were considerably lower than those under quasi-static loading because of the decreased resistance to fracture. The STS-fiber-reinforced composite showed a greater compressive strength and ductility under dynamic loading than the tantalum-fiber-reinforced composite because of the excellent resistance to fracture of STS fibers.

Comparison of Forming Limit Diagram to Prove Improved Formability of High-speed Forming Acquired Experimentally and Theoretically (고속 성형의 성형성 향상 입증을 위한 실험 및 이론적 성형한계선도 획득 및 비교)

  • M. S. Kim;Y. H. Jang;J. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.87-95
    • /
    • 2024
  • The current study aims to prove that high-speed forming has better formability than conventional low-speed forming. Experimentally, the quasi-static forming limit diagram was obtained by Nakajima test, and the dynamic forming limit diagram was measured by electrohydraulic forming. For the experiments, the LS-DYNA was used to create the optimal specimen for electrohydraulic forming. The strain measurement was performed using the ARGUS, and comparison of the forming limit diagrams confirmed that EHF showed better formability than quasi-static forming. Theoretically, the Marciniak-Kuczynski model was used to calculate the theoretical forming limit. Swift hardening function and Cowper Symonds model were applied to predict the forming limits in quasi-static and dynamic status numerically.

Quasi-Static and Dynamic Torsional Deformation Behavior of API X70 and X80 Linepipe Steels (API X70 및 X80급 라인파이프강의 준정적 및 동적 비틀림 변형 거동)

  • Kim, Yongjin;Kim, Yang Gon;Shin, Sang Yong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.8-18
    • /
    • 2010
  • This study aimed at investigating quasi-static and dynamic torsional deformation behavior of three API X70 and X80 linepipe steels. Quasi-static and dynamic torsional tests were conducted on these steels. having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar. The test data were then compared via microstructures and adiabatic shear band formation,. The dynamic torsional test results indicated that the steels rolled in the single phase region had higher maximum shear stress than the steel rolled in the two phase region, because the microstructures of the steel rolled in the single phase region were composed mainly of acicular ferrites. In the X80 steel rolled in the single phase region, the increased dynamic torsional properties could be explained by a decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of adiabatic shear band formation was analyzed from the energy required for void initiation and variation in effective grain size.

Study of Crush Strength of Aluminum Honeycomb for Shock Absorber of Lunar Lander (달착륙선 충격흡수장치용 알루미늄 허니콤의 Crush Strength에 관한 연구)

  • Kim, Shin;Lee, Hyuk-Hee;Kim, Hyun-Duk;Park, Jung-Sun;Im, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2010
  • Understanding the crushing behaviour of aluminum honeycombs under dynamic loading is useful for crash simulations of vehicles and for design of impacting energy absorbers. In the study of honeycomb crushing under quasi-static, dynamic loading, the most important parameter is crush strength. Crush strength is indicated to energy absorption characteristic of aluminum honeycomb. In this study, Using Finite Element Analysis carried out crush strength of hexagonal aluminum honeycomb then the results was compared with Quasi-static test. Consequently, Crush strength is different in quasi-static loading and dynamic loading about 16%.

  • PDF

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

Dynamic Test Results Assessment on the Optical Bench of LEO Satellite (저궤도 지구관측위성의 광학탑재체 지지구조물 동환경시험 결과분석)

  • Kim, Kyung-Won;Kim, Jin-Hee;Rhee, Ju-Hun;Kim, Sun-Won;Jin, Ik-Min;Park, Jong-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.242-245
    • /
    • 2006
  • This paper is an assessment on the dynamic test results of optical bench for LEO satellite. According to the design requirements, optical bench was designed and manufactured. Dynamic test was performed to verify stability of optical bench. Low level random vibration test, sine burst test and sine vibration test are carried out to identify dynamic characteristics and to verify static strength and safety under quasi-static load conditions. From the result it can be stated that the optical bench is well qualified under the launch environmental conditions.

  • PDF