• Title/Summary/Keyword: Quasi-static Loading

Search Result 231, Processing Time 0.023 seconds

Loading Rate Effects During Static Indentation and Impact on Silicon Carbide with Small Sphere (탄화규소에 구형입자의 정적압입 및 충격시 부하속도의 영향)

  • Shin, Hyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3847-3855
    • /
    • 1996
  • In order to study the relationship between static and cynamic behaviors of silion caride, both quasi-static indentaiton and impact experiments of spherical particle have been conducted. The difference inmaterial behavior when using the two mehtods suggests a loading rate difference in the damate pattrern and fracture strength of silicon carbide. This investigation showed some difference in damage pattern according to particla property, especially inthe case of particle impact. There was no differences in deformation behaviors according to the loading rate when the crater profiles were compared with each other at the same contact radius. From the result of residual strength evaluation, it was found that the strength degradation began at the initiation of ring crack and its behavior was colsely related to morphologies of the damage developed which was also dependent upon the extent of deformation atthe loaidng point. In the case of static indentation, there didnot exist the particle property effects onthe strength degradation behavior.

Fatigue Life Evaluation of Spot Welding Including Loading Speed Effect (점용접부에서 하중속도효과를 고려한 피로수명평가)

  • ;;;;A. Shimamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2003
  • Evaluation of fatigue strength on the spot welded part is very important for strength design of spot welded steel structures. In this paper, we could get the life cycle of the spot welded part using the lethargy coefficient obtained through the quasi-static tensile shear test for the specimen welded by current 10kA. The reliability evaluation of the life cycle is completed by comparing the life cycle calculated under the constant loading rate with the life cycle obtained by dynamic fatigue test. And then the result calculated by the lethargy coefficient is verified through the lift cycle calculated using the dynamic final tensile stress formula under the increased loading speed. This way can make save the time and cost in processing of predicting the life cycle of a structure.

The Static Strength Analysis and Experiment of Composite Laminate (복합재료 적층판의 정 강도 해석 및 실험)

  • 김인권;공창덕;방조혁
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.104-107
    • /
    • 2001
  • The purpose of this work is to investigate the static strength, the stress distribution, and the failure process of quasi-isotropic composite laminates made of two different matrices when loading directions are changed. We carried out static tests of $[0/-60/+60]_s$ and $[+30/-30/90]_s$ laminates. Two types of matrices used are AS4/epoxy and AS4/PEEK. The damage mechanisms of the quasi-isotropic laminate, $[0/-60/+60]_s$, strongly depend on the load direction applied to the laminate.

  • PDF

Use of copper shape memory alloys in retrofitting historical monuments

  • El-Borgi, S.;Neifar, M.;Jabeur, M. Ben;Cherif, D.;Smaoui, H.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.247-259
    • /
    • 2008
  • The potential use of Cu-based shape memory alloys (SMA) in retrofitting historical monuments is investigated in this paper. This study is part of the ongoing work conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The present investigation consists of a finite element simulation, as a preliminary to an experimental study where a cantilever masonry wall, representing a part of a historical monument, is subjected to monotonic and quasi-static cyclic loadings around a horizontal axis at the base level. The wall was retrofitted with an array of copper SMA wires with different cross-sectional areas. A new model is proposed for heat-treated copper SMAs and is validated based on published experimental results. A series of nonlinear finite element analyses are then performed on the wall for the purpose of assessing the SMA device retrofitting capabilities. Simulation results show an improvement of the wall response for the case of monotonic and quasi-static cyclic loadings.

Application of Wavelet Transform in Estimating Structural Dynamic Parameters by Vehicle Loading Test (차량재하시험에 의한 구조물 동특성 평가에 웨이블렛변환의 이용)

  • Park, Hyung-Ghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2005
  • The vehicle loading test under the strict traffic control is generally carried out as a present practice in an evaluation process of the bearing capacity of a bridge. The quasi-static load test is recently proposed to mitigate the traffic condition of test, and analyze the disturbed acceleration time-history data of free vibration due to the ambient traffic on the bridge by Fourier transform to calculate only the natural frequencies of the bridge. The calculated frequencies have some errors due to the analysis technique as well as the influence of ambient traffic loads, and in addition to it is cumbersome to obtain the free vibration data during a quasi-static load test. In this study, the wavelet transform technique using Morlet wavelet is used to analyze the acceleration data recorded during a quasi-static load test on a bridge and calculate the natural frequencies and the modal damping ratios of the bridge. The study results show that the wavelet transform technique is a reliable and reasonable method to analyze test data and obtain the natural frequencies and the modal damping ratios of a bridge regardless of the data types i.e. free or forced vibrations.

Peridynamic Modeling for Crack Propagation Analysis of Materials (페리다이나믹 이론 모델을 이용한 재료의 균열 진전 해석)

  • Chung, Won-Jun;Oterkus, Erkan;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • In this paper, the computer simulations are carried out by using the peridynamic theory model with various conditions including quasi-static loads, dynamic loads and crack propagation, branching crack pattern and isotropic materials, orthotropic materials. Three examples, a plate with a hole under quasi-static loading, a plate with a pre-existing crack under dynamic loading and a lamina with a pre-existing crack under quasi-static loading are analyzed by computational simulations. In order to simulate the quasi-static load, an adaptive dynamic relaxation technique is used. In the orthotropic material analysis, a homogenization method is used considering the strain energy density ratio between the classical continuum mechanics and the peridynamic. As a result, crack propagation and branching cracks are observed successfully and the direction and initiation of the crack are also captured within the peridynamic modeling. In case of applying peridynamic used homogenization method to a relatively complicated orthotropic material, it is also verified by comparing with experimental results.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.

Behavior of tunnel form buildings under quasi-static cyclic lateral loading

  • Yuksel, S. Bahadir;Kalkan, Erol
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.99-115
    • /
    • 2007
  • In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.

Quasi-Static Structural Optimization Technique Using Equivalent Static Loads Calculated at Every Time Step as a Multiple Loading Condition (매 시간단계의 등가정하중을 다중하중조건으로 이용한 준정적 구조최적화 방법)

  • Choe, U-Seok;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2568-2580
    • /
    • 2000
  • This paper presents a quasi-static optimization technique for elastic structures under dynamic loads. An equivalent static load (ESL) set is defined as a static load set which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at every time step are employed to represent the various states of the structure under the dynamic load. They can cover every critical state that might happen at an arbitrary time. Continuous characteristics of dynamic load are simulated by multiple discontinuous ones of static loads. The calculated sets of ESLs are applied as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. Design cycles are repeated until a design converges. The analysis domain gives a loading condition necessary for the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. This iterative process is quite similar to that of the multidisciplinary optimization technique. Even though the global convergence cannot be guaranteed, the proposed technique makes it possible to optimize the structures under dynamic loads. It has also applicability, flexibility, and reliability.

Seismic Performance of Concrete-Filled Steel Piers Part II: Pseudo-Dynamic Test and Residual Seismic Capacity (강합성교각의 내진성능평가 Part II: 유사동적실험 및 잔류내진성능 평가)

  • 조창빈;서진환;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 2002
  • Ductile behavior and strength of concrete-filled steel(CFS) piers was supported by many quasi-static cyclic loading tests. This test method, however, only estimates the member′s deformation capacity under escalating and repetitive displacement and ignores dynamic and random aspects of an earthquake load. Therefore, to understand complete seismic behavior of the structure against an earthquake, dynamic tests such as shaking table test and pseudo-dynamic tests are required as well as quasi-static tests. In this paper, following "Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loadint Test", the seismic behavior of CFS and steel piers designed for I-Soo overpass in Seoul in investigated by the pseudo-dynamic test. In addition, the residual strength of both piers after an earthquake is estimated by the quasi-static test. The results show that both piers have satisfactory ductility and strength against well-known EI Centro earthquake although the CFS pier has better strength and energy dissipation than the steel pier.