DOI QR코드

DOI QR Code

Peridynamic Modeling for Crack Propagation Analysis of Materials

페리다이나믹 이론 모델을 이용한 재료의 균열 진전 해석

  • Chung, Won-Jun (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Oterkus, Erkan (Department of Naval Architecture Ocean and Marine Engineering, University of Strathclyde) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 정원준 (부산대학교 조선해양공학과) ;
  • ;
  • 이제명 (부산대학교 조선해양공학과)
  • Received : 2018.01.23
  • Accepted : 2018.04.19
  • Published : 2018.04.30

Abstract

In this paper, the computer simulations are carried out by using the peridynamic theory model with various conditions including quasi-static loads, dynamic loads and crack propagation, branching crack pattern and isotropic materials, orthotropic materials. Three examples, a plate with a hole under quasi-static loading, a plate with a pre-existing crack under dynamic loading and a lamina with a pre-existing crack under quasi-static loading are analyzed by computational simulations. In order to simulate the quasi-static load, an adaptive dynamic relaxation technique is used. In the orthotropic material analysis, a homogenization method is used considering the strain energy density ratio between the classical continuum mechanics and the peridynamic. As a result, crack propagation and branching cracks are observed successfully and the direction and initiation of the crack are also captured within the peridynamic modeling. In case of applying peridynamic used homogenization method to a relatively complicated orthotropic material, it is also verified by comparing with experimental results.

본 연구에서 페리다이나믹 이론 모델을 이용하여 준정적하중과 동적 하중, 균열전파와 분기균열 패턴 그리고 등방성재료, 직교 이방성 재료의 균열 진전 해석 등 다양한 조건을 고려한 전산 시뮬레이션을 수행하여 그 적합성을 검토하였다. 초기 균열은 없지만 중심에 홀이 있는 등방성 재료, 초기 균열이 존재하는 등방성 및 이방성 재료에 대한 전산 시뮬레이션이 수행되었다. 조정 동적 완화 기법이 사용되어 준정적 하중을 모사하였고, 이방성 재료 해석에서는 고전 연속체 역학과 페리다이나믹의 변형률 에너지를 고려한 균질화 방법이 사용되었다. 균열 전파와 분기 균열이 성공적으로 확인되었으며 파괴 거동의 시작과 그 방향 역시 페리다이나믹 이론으로 확인되었다. 페리다이나믹을 균질화 방법을 사용하여 비교적 복잡한 이방성 재료에 적용한 경우 역시 실험 결과 값과 비교하여 검증하였다.

Keywords

References

  1. Ahn, T.S., Ha, Y.D (2017) Study on Peridynamic Interlayer Modeling for Multilayered Structures, J. Comput. Struct. Eng. Inst. Korea, 30(5), pp.389-396. https://doi.org/10.7734/COSEIK.2017.30.5.389
  2. Anderson, T.L. (1994) Fracture Mechanics: Fundamentals and Applications, CRC Press, New York, p.667.
  3. Belytschko, T., Black, T. (1999) Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng. 45(5), pp.601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  4. Barenblatt, G.I. (1962) The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Adv. Appl. Mech., 7, pp.55-129.
  5. Bogert, P.B., Satyanarayana, A., Chunchu, P.B. (2006) Comparison of Damage Path Predictions for Composite Laminates by Explicit and Standard Finite Element Analysis Tools, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI, United States
  6. Diyaroglu, C., Oterkus, E., Madenci, E., Rabczuk, T., Siddiq, A. (2016) Peridynamic Modeling of Composite Laminates under Explosive Loading, Compos. Struct., 144, pp.14-23. https://doi.org/10.1016/j.compstruct.2016.02.018
  7. Dolbow, J., Belytschko, T. (1999) A Finite Element Method for Crack Growth without Remeshing, Int. J. Numer. Methods Eng., 46(1), pp.131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  8. Dugdale, D.S. (1960) Yielding of Steel Sheets Containing Slits, J. Mech. & Phys. Solids, 8(2), pp.100-104. https://doi.org/10.1016/0022-5096(60)90013-2
  9. Griffith, A.A. (1921) The Phenomena of Rupture and Flow in Solids, Philos. Trans. Royal Soc. London. Series A, Contain. Papers Math. or Phys. Character, 221, pp.163-198. https://doi.org/10.1098/rsta.1921.0006
  10. Ha, Y.D. (2015) Dynamic Fracture Analysis with State-based Peridynamic Model: Crack Patterns on Stress Waves for Plane Stress Elastic Solid, J. Comput. Struct. Eng. Inst. Korea, 28(3), pp.309-316. https://doi.org/10.7734/COSEIK.2015.28.3.309
  11. Ha, Y.D., Lee, J., Hong, J.W. (2015). Fracturing Patterns of Rock-like Materials in Compression Captured with Peridynamics, Eng. Fract. Mech., 144, pp.176-193. https://doi.org/10.1016/j.engfracmech.2015.06.064
  12. Hillerborg, A., Modeer, M., Petersson, P.E. (1976) Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cement & Concr. Res., 6(6), pp.773-781. https://doi.org/10.1016/0008-8846(76)90007-7
  13. Hu, W., Ha, Y.D., Bobaru, F. (2011) Modeling Dynamic Fracture and Damage in a Fiber-reinforced Composite Lamina with Peridynamics, Int. J. Multiscale Comput. Eng., 9(6).
  14. Kanninen, M.F., Popelar, C.L. (1985) Advanced Fracture Mechanics, Oxford University Press, Oxford, p.563.
  15. Kilic, B., Madenci, E. (2010) An Adaptive Dynamic Relaxation Method for Quasi-static Simulations using the Peridynamic Theory, Theor. & Appl. Fracture Mech., 53(3), pp.194-204. https://doi.org/10.1016/j.tafmec.2010.08.001
  16. Kim, J.H., Park, S., Cho, S. (2015) Structural Design Optimization of Dynamic Crack Propagation Problems Using Peridynamics, J. Comput. Struct. Eng. Inst. Korea, 28(4), pp.425-431. https://doi.org/10.7734/COSEIK.2015.28.4.425
  17. Lee, J., Hong, J.W. (2016) Dynamic Crack Branching and Curving in Brittle Polymers, Int. J. Solids & Struct., 100, pp.332-340.
  18. Lee, J., Oh, S.E., Hong, J.W. (2017) Parallel Programming of A Peridynamics Code Coupled with Finite Element Method, Int. J. Fract., 203(1-2), pp.99-114. https://doi.org/10.1007/s10704-016-0121-y
  19. Lindsay, P.E. (2017) Coupling Peridynamics with Finite-Elements for Fast, Stable and Accurate Simulations of Crack Propagation (Doctoral dissertation, Purdue University).
  20. Madenci, E., Oterkus, E. (2014) Peridynamic Theory and Its Applications (Vol. 17), Springer, New York, p.289.
  21. Moes, N., Dolbow, J., Belytschko, T. (1999) A Finite Element Method for Crack Growth without Remeshing, Int. J. Numer. Methods Eng., 46(1), pp.131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  22. Oterkus, E., Madenci, E. (2012) Peridynamic Analysis of Fiber-reinforced Composite Materials, J. Mech. Mater. & Struct., 7(1), pp.45-84. https://doi.org/10.2140/jomms.2012.7.45
  23. Silling, S.A. (2000) Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48(1), pp.175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
  24. Silling, S.A., Askari, E. (2005) A Meshfree Method based on the Peridynamic Model of Solid Mechanics, Comput. & Struct., 83(17), pp.1526-1535. https://doi.org/10.1016/j.compstruc.2004.11.026
  25. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E. (2007) Peridynamic States and Constitutive Modeling, J. Elast., 88(2), pp.151-184. https://doi.org/10.1007/s10659-007-9125-1
  26. Xu, X.P., Needleman, A. (1994) Numerical Simulations of Fast Crack Growth in Brittle Solids, J. Mech. & Phys. Solids, 42(9), pp.1397-1434. https://doi.org/10.1016/0022-5096(94)90003-5
  27. Xu, J., Askari, A., Weckner, O., Razi, H., Silling, S.A. (2007) Damage and Failure Analysis of Composite Laminates under Biaxial Loads, In 48th AIAA Structures, Structural Dynamics, and Materials Conf., Honolulu, Hawai.
  28. Zi, G., Rabczuk, T., Wall, W. (2007) Extended Meshfree Methods without Branch Enrichment for Cohesive Cracks, Comput. Mech., 40(2), pp.367-382. https://doi.org/10.1007/s00466-006-0115-0