• Title/Summary/Keyword: Quasi-dimensional

Search Result 413, Processing Time 0.024 seconds

Development of a Consistent General Order Nodal Method for Solving the Three-Dimensional, Multigroup, Static Neutron Diffusion Equation

  • Kim, H.D.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.34-39
    • /
    • 1996
  • A consistent general order nodal method for solving the 3-D neutron diffusion equation in (x-y-z) geometry has ben derived by using a weighted integral technique and expanding the spatial variables by the Legendre orthogonal series function. The equation set derived can be converted into any order nodal schemes. It forms a compact system for general order of nodal moments. The method utilizes the analytic solutions of the transverse-integrated quasi -one dimensional equations and a consistent expansion for the spatial variables so that it renders the use of an approximation for the transverse leakages no necessary. Thus, we can expect extremely accurate solutions and the solution would converge exactly when the mesh width is decreased or the approximation order is increased since the equation set is consistent mathematically.

  • PDF

First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

  • Son, Seungwook;Kim, Dongwook;Na-Phattalung, Sutassana;Ihm, Jisoon
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850138.1-1850138.6
    • /
    • 2018
  • Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.

Hydration Effect on the Intrinsic Magnetism of Natural Deoxyribonucleic Acid as Studied by EMR Spectroscopy and SQUID Measurements

  • Kwon, Young-Wan;Lee, Chang-Hoon;Do, Eui-Doo;Choi, Dong-Hoon;Jin, Jung-Il;Kang, Jun-Sung;Koh, Eui-Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1233-1242
    • /
    • 2008
  • The hydration effect on the intrinsic magnetism of natural salmon double-strand DNA was explored using electron magnetic resonance (EMR) spectroscopy and superconducting quantum interference device (SQUID) magnetic measurements. We learned from this study that the magnetic properties of DNA are roughly classified into two distinct groups depending on their water content: One group is of higher water content in the range of 2.6-24 water molecules per nucleotide (wpn), where all the EMR parameters and SQUID susceptibilities are dominated by spin species experiencing quasi one-dimensional diffusive motion and are independent of the water content. The other group is of lower water content in the range of 1.4-0.5 wpn. In this group, the magnetic properties are most probably dominated by cyclotron motion of spin species along the helical π -way, which is possible when the momentum scattering time (${\tau}_k$) is long enough not only to satisfy the cyclotron resonance condition (${\omega}_c{\tau}_k$ > 1) but also to induce a constructive interference between the neighboring double helices. The same effect is reflected in the S-shaped magnetization-magnetic field strength (M-H) curves superimposed with the linear background obtained by SQUID measurements, which leads to larger susceptibilities at 1000 G when compared with the values at 10,000 G. In particular, we propose that the spin-orbital coupling and Faraday's mutual inductive effect can be utilized to interpret the dimensional crossover of spin motions from quasi 1D in the hydrate state to 3D in the dry state of dsDNA.

Development of Quasi-Conforming Shell Element for the Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 준적합 쉘 요소 개발)

  • Kim, Ki-Du;Byun, Yun-Joo;Kim, Hyun-Ky;Lomboy, Gilson R.;Suthasupradit, Songsak;Kim, Young-Hoe
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2007
  • The PSC box bridge constructed of concrete, reinforcing bar and tendon is a complex structure that exhibits tension cracks, nonlinear behaviour of steel and time dependent behaviour of concrete. The frame element is commonly used for construction stage analysis PSC bridges. However, the frame element does not show sufficient information when in the curved PSC box bridges. For the case of curved PSC bridges, the deformations in the inner and outer web are different. In this case, different jacking forces are required in the inner and outer webs. However, it is impossible to calculate different jacking forces if we use the frame element for construction stage analysis. In order to overcome this problem, the use of the shell element is essential for a three-dimensional construction stage analysis of PSC bridges. In the following, the formulation of a Quasi-conforming shell element and its application of PSC box girder bridge analysis are presented.

Three-dimensional dynamics of vortex-induced vibration of a pipe with internal flow in the subcritical and supercritical regimes

  • Duan, Jinlong;Chen, Ke;You, Yunxiang;Wang, Renfeng;Li, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.692-710
    • /
    • 2018
  • The Three-dimensional (3-D) dynamical behaviors of a fluid-conveying pipe subjected to vortex-induced vibration are investigated with different internal flow velocity ${\nu}$. The values of the internal flow velocity are considered in both subcritical and supercritical regimes. During the study, the 3-D nonlinear equations are discretized by the Galerkin method and solved by a fourth-order Runge-Kutta method. The results indicate that for a constant internal flow velocity ${\nu}$ in the subcritical regime, the peak Cross-flow (CF) amplitude increases firstly and then decrease accompanied by amplitude jumps with the increase of the external reduced velocity. While two response bands are observed in the In-line (IL) direction. For the dynamics in the lock-in condition, 3-D periodic, quasi-periodic and chaotic vibrations are observed. A variety of CF and IL responses can be detected for different modes with the increase of ${\nu}$. For the cases studied in the supercritical regime, the dynamics shows a great diversity with that in the subcritical regime. Various dynamical responses, which include 3-D periodic, quasi-periodic as well as chaotic motions, are found while both CF and IL responses are coupled while ${\nu}$ is beyond the critical value. Besides, the responses corresponding to different couples of ${\mu}_1$ and ${\mu}_2$ are obviously distinct from each other.

Performance Analysis of Liquid Pintle Thruster Using Quasi-one-dimensional Multi-phase Reaction Flow: Part I Key Sub-model Validation (준 일차원 다상 반응유동 기법을 이용한 케로신/과산화수소 액체 핀틀 추력기 성능해석 연구: Part I. 주요 구성 모델 검증)

  • Kang, Jeongseok;Bok, Janghan;Sung, Hong-Gye;Kwon, Minchan;Heo, JunYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.69-77
    • /
    • 2020
  • A quasi one-dimensional multi-phase reaction flow analysis code is developed for the performance analysis of liquid pintle thrusters. Unsteady flow field, droplet evaporation, finite reaction and film cooling models are composed as the major models of the performance analysis. The droplet vaporization takes account of Abramzon's vaporization model, and the combustion employs a flamelet model based on detail chemical reactions. Shine's model is applied for the film cooling calculation. To verify each model, the Sod shock tube, single droplet vaporization, kerosene droplets combustion, and film length are evaluated.

Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading

  • Himeur, Nabil;Mamen, Belgacem;Benguediab, Soumia;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bouchouicha, Benattou;Bourada, Fouad;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.353-369
    • /
    • 2022
  • This study attempts to shed light on the coupled impact of types of loading, thickness stretching, and types of variation of Winkler-Pasternak foundations on the flexural behavior of simply- supported FG plates according to the new quasi-3D high order shear deformation theory, including integral terms. A new function sheep is used in the present work. In particular, both Winkler and Pasternak layers are non-uniform and vary along the plate length direction. In addition, the interaction between the loading type and the variation of Winkler-Pasternak foundation parameters is considered and involved in the governing equilibrium equations. Using the virtual displacement principle and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are computed. Finally, the non-dimensional formulas' results are validated with the existing literature, and excellent agreement is detected between the results. More importantly, several complementary parametric studies with the effect of various geometric and material factors are examined. The present analytical model is suitable for investigating the bending of simply-supported FGM plates for special technical engineering applications.

Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT

  • Fatima Z. Zaoui;Djamel Ouinas;Abdelouahed Tounsi;Belkacem Achour;Jaime A. Vina Olay;Tayyab A. Butt
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.551-568
    • /
    • 2023
  • In this research, a new two-dimensional (2D) and quasi three-dimensional (quasi-3D) higher order shear deformation theory is devised to address the bending problem of functionally graded plates resting on an elastic foundation. The displacement field of the suggested theories takes into account a parabolic transverse shear deformation shape function and satisfies shear stress free boundary conditions on the plate surfaces. It is expressed as a combination of trigonometric and exponential shear shape functions. The Pasternak mathematical model is considered for the elastic foundation. The material properties vary constantly across the FG plate thickness using different distributions as power-law, exponential and Mori-Tanaka model. By using the virtual works principle and Navier's technique, the governing equations of FG plates exposed to sinusoidal and evenly distributed loads are developed. The effects of material composition, geometrical parameters, stretching effect and foundation parameters on deflection, axial displacements and stresses are discussed in detail in this work. The obtained results are compared with those reported in earlier works to show the precision and simplicity of the current formulations. A very good agreement is found between the predicted results and the available solutions of other higher order theories. Future mechanical analyses of three-dimensionally FG plate structures can use the study's findings as benchmarks.

A Study on A Dimensional Active Phased Array Antenna (2차원 Quasi-optical 능동배열 안테나에 관한 연구)

  • 김준모;윤형국;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.514-522
    • /
    • 2000
  • In this thesis, a two-dimensional active phased array antenna without phase shifter is studied for two-dimensional beam scanning. A designed two-dimensional oscillator-type active array antenna, radiation elements and the oscillator circuits were combined with via-hole and coupled by slot on the opposite ground plane. The operating characteristics are analyzed and experimentally demonstrated , The two-dimensional $4\times4$ elements were designed for the proper coupling strengths and coupling phases by adjusting the width, length and offset position of slot-lines. The fabricated active phased array antenna shows the beam shift characteristics capable of scanning from $-17^{\circ}$ to $18^{\circ}$ with respect to broadside in one dimension, from $-5^{\circ}$ to $10^{\circ}$ in two dimension. The experimental results show that it is possible to use the oscillator-type active phased array antenna as a two-dimensional planar array antenna.

  • PDF

The Quasi 3-D Flow Simulation in injection Molding Using Virtual Pressure Reflection (가상 반사압력을 이용한 사출성형의 준3차원 유동해석)

  • 이호상;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1294-1306
    • /
    • 1992
  • In order to determine the design parameters and processing conditions in injection molding, it is very important to establish the theoretical model with scientific base. In this study, a two dimensional model has been developed for the purpose and flow simulations of filling process are carried out. The moving boundary transient flow problem along the flat plane is solved efficiently by the Iterative Boundary Pressure Reflection Method which rearranges the impinged melt front along the physical boundary in scientific manner. The two dimensional modeling of filling process is applied to two examples : a three dimensional cover with two screw holes and a two-gated flat cavity with unbalanced runners. The numerical results show good agreement with experimental short shots, especially for the weldline locations and the pressure traces at various locations. They also provide the temperature, clamp force, and velocity field in the mold at different times during filling of cavity.