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ABSTRACT

A consistent general order nodal method for solving the 3-D neutron diffusion
equation in (x-y-z) geometry has been derived by using a weighted integral
technique and expanding the spatial variables by the Legendre orthogonal series
function., The equation set derived can be converted into any order nodal
schemes. It forms a compact system for general order of nodal moments. The
method utilizes the analytic solutions of the transverse-integrated quasi-one
dimensional equations and a consistent expansion for the spatial variables so
that it renders the use of an approximation for the transverse leakages no
necessary. Thus, we can expect extremely accurate solutions and the solution
would convergé exactly when the mesh width is decreased or the approximation

order is increased since the equation set is consistent mathematically,
1. INTRODUCTION

Modern coarse-mesh nodal methods are a very efficient class of numerical
methods that have proven to be superior in accuracy, computer storage
requirement and computing time to finite difference and finite element methods
fdr the solution of large, multidimensional, neutron diffusion problems!,
However, in nodes the transverse currents at their surfaces not varying
smoothly, substantial errors subsist and convergence difficulties may arise’.
These problems arise mainly from the inconsistent quadratic fit approximations
of the transverse leakagea. To overcome them, higher order scheme has been
suggested’, A higher order nodal scheme for two-dimensional geometry showed
greatly accurate results’, In the present work, a general order consistent nodal
method without the transverse leakage approximation for 3-D multi-group

diffusion equation is derived by using a weighted integral technique and



expanding the spatial variables by the Legendre function. This work aims at
deriving a mathematically consistent method so that the solution can be
converged to the exact values in fine mesh limit and establishing the missing

link between nodal methods and conventional finite difference methods,
2. GENERALIZED FLUX MOMENT FORMULATION

In a node of widths, Axi, Ay; and Az in %, y and z directions, respectively,

the multigroup diffusion equation is written by the dimensionless variables,

- 4Dg/Axi® 3%0g(u, v, w)/8u® - 4Dy/Ay;’ 8%04(u, v, w)/av? - 4Dg/ Azt 9%0g(u, v, w) /oW’
* Zegle(u, v, w) = sg{u,v,w), : (1)
where ‘

G
Sg(u, V,W) = Z{Xg/ke Vng‘ + ZSg'g}q)g'(u,V, W) + QOg(U,V. W) (2)
g=l

and -1 <u, v, w<l,

We derive the transverse integrated quasi-one-dimensional nodal equation set
by applying a weighted integration. Each resulting differential equation is for
the general order moment of the flux in the transverse spatial direction. For
example, for the v and w moments of the u-dependent flux, we multiply Eq. (1) by
Pn,(v) and Pn'(w), the Legendre polynomials in v and w variables, respectively,
and integrate over -1 < v, w < 1 in the node to arrive at the u-channel

differential equation,

-4D/AE d Hna(u)/d u® + Sonadu) = Anadlu), : (3)
where
11
Onne(u) = ffdvdw Po(v)Pa(w)0(u, v, w), (4)
-1 -1
Annu) = Snn,(u) - Ly, nene) - Ly, neny), . (5)
" (ne-1)/2 ’
Ly, n,ng) = 470y {Jn(u, 1) + (-1)™ Jn(y,-1) - Z(va—41-1)Jv(n\v—Zl—l)nw(U)}, (8)
1=0
and
1 1
Jne(u,1) = fdw Pc(w)Jo(u,1,w) = -Dfdw Pndw) ad(u,1,w)/av, (7)
-1 |

and group index g is omitted,
After expanding the source term, Aunndu) by the Legendre function in u and
substituting into Eq. (3), solving this, we obtain the equation for the

u-dependent, n, and n, moment fluxes, ¢n.nfu),



dnn(u) = {Binn,d + Zsinunvn.(u)} cosh(rw) + {Bun2 - ZConun‘vn‘(u)} sinh(rw), (8)

n,=0 n.=0
vhere
re = (Ax/2) V3D, (9)
Sinan(u) = A/ (4rD) (2n.+1)/2 Anna, [sinh(ru)Pa(u)du, (10)
Coanane(u) = AxY/(4rD) (2n4+1)/2 A fcosh(ruu)Pn.(u)du, (11)

and Biawnd and Ban2 are the coefficients which are expressed by the net current
moments on right (R) and left (L) surfaces, J%an. and J.)nn,, and Sinnn(u) and

Caann(u) at u=l and -1. The equations for v- and w-channels can be derived
similarly.

If we multiply Eq. (3) by Pn.u) and integrate over -1 < u < 1, we obtain the
generalized moment balance equation in (u—y-w) coordinates,

Lu(nlh Ny, nw) + Lv(nu, Ny, n\t) + L:(nu, Ny, nw) + ztd)nunvn, = Snawn,, ( 12)

The solution for the flux moments given by Eq. (12) depends on the
availability of the interface net current moments. When the continuity condition
for the flux moments [Eq. (8)] at given interfaces are used, the spatial
dependent flux moments are eliminated and a coupling equation relating the three
net current moments at three consecutive interfaces is obtained. For example,

for u-direction,

E.iadidnaneia + Eoidinee: + Euiadinae i = Quang s, (13)
where ) ‘

E.ix = -1/{rDsinh(2ry} i, (14)
E.i1 = -1/{rDsinh(2ry};, (15)
E.: = -E.incosh(2ry i) - E.iucosh(2r ), (16)
and

Qane: = 1/{2cosh(ru,;-|)}nZéS;n..n\.n.(uﬂ) - Sinaa(u=-1)}.,
. 1/{Zcosh(r‘u,i)}an)Sm..mm(u:l) - Snaan(u=-1);

+ 1/{2sinh(rui1)} nz;gconun‘-n.(uﬂ) - Ganndu=-1)},.

t

1/{2sinh{ry)} rZz{oconwn\-m(lx:l) - Coann(u=-1)}i. . (17)

The process is repeated for all nodes and moments and for each spatial
direction, giving special treatment only to boundary nodes by incorporating the
boundary conditions. The resulting equation set for net current moments can be
solved by the direct method.



3. NUMERICAL EXAMPLES

The acuracy and efficiency of the method have been studied for the three test

casesz' 5;

1. LMW light water reactor three-dimensional test problem,
2. LRA boiling water reactor three-dimensional benchmark problem,

3. IAEA pressurized water reactor three-dimensional benchmark problem.

The solutions for these problems are summarized in Table 1 through 4. Tables

contain values for kesr and the power distribution in fuel elements,

4, SUMMARY

The equation set derived constitutes a compact system for general order nodal
moments. This system can be converted into any orders of nodal moments or the
standard finite difference form. When the derived equation set is truncated at
finite moment series for a desired order moment, they can be solved by the
standard power method for eigenvalue iteration. The method uses a consistent
polynomial expansion for the given spatial variables without any approximations,
and therefore, we can expect extremely accurate solutions, and the solution
would converge exactly when the mesh width is decreased or the approximation
order is increased. The numerical examples tested with the leakage moments
truncated at first order and the in-node moments at first or second order show
very good accuracy in kesr and local power densities compared with the
references. The method should be a promising one for solving the multigroup
neutron diffusion equation with highest accuracy and computational efficiency.
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Table 1. Comparison of K-effective Value

The Problem The Code K-eff Calculation Time
(Min. )

LMW Reference! . 99966

ILLico™ .99962

The Solution® (1,1) . 99965 0.91°
LRA Reference’ . 99639

_ (.99644)""

ILLICO*? .99634

The Solution® (1,2) . 99633 3.47
1AEA Reference® 1,02903

10SBOX*" 1.02904

ILLICO™? 1. 02900

The Solution® (1,1) 1.02902 9.47"
1. The reference (QUANDRY): 10 x 10 x 20 (10) cm meshes in x-y-z.
1-1. The ILLICO: 10 x 10 x 10 cm meshes in x-y-z.

P o mwRw
[ 0 -

6.

The calculation: 10 x 10 x 20 cm meshes in x-~y-z.
The reference (QUANDRY): 7.5 x 7.5 x 25(15) cm meshes in x-y-z.
¢ 15 x 15 x x 25(15) cm meshes in x-y-z.

. The ILLICO result: 15 x 15 x 30 cm meshes in x-y-z.

The calculation: 15 x 15 x 30 cm meshes in x~y-z,
The reference (VENTURE result exporated): 1 - 2/3 cm meshes.

. The 1QSBOX result: 10 x 10 x 20 (10) cm qeshes in x-y-z.
. The ILLICO result: 10 x 10 x 20 (10) ca meshes in x-y-z.

The calculation: 10 x 10 x 20 cm meshes in x-y-z.

# Convergence criteria of 1,0E-05, flat flux initial guess, and HP-715 computer used

Table 2. Nodal Power Densities for the 3-D LMW LWR Benchmark Problem

. 7268 .7083 6274 . 4345

-.33 -.28 -.17

.9801 1.0833 . 9801 . 8597

.01 .01 .06

1. 4401 1.3959 1.1228

.13

.12 .08

1.6544  1.5894

.18 17
1.5542 Reference Power
.17 % Error (1,1)  -- (Prar-Pea1) /Prer x100



Table 3. Nodal Power Densities for the 3-D LRA Benchmark Problem.

L9719
.32

1.6216  1.3319
.25 .76

.9239 . 8669 . 8266 . 8528 .9324

.10 .13 .18 .23 .28
1. 4807 1.2806 1.1726 1.2211 1.4215
-.02 -.14 01 .07 02
1.6599 1.1506 9667 1.0224 1.3381
-.26 -.05 -.09 -.02 03
1.3844 9397 7826 . 8434 1.1521
-.30 -.12 -.15 -.07 07

. 7901 6703 6181 .6782 8643
-17 -.33 -.18 -.12 -.16

.5119 4904 . 4902 .5524
-3 -.27 -.62 -.19

4131 4067 4240
-.37 -.33 -.30

. 4403 3995
-.36 -.48

.6118 Reference Power
-.57 % ERROR (1,2)  -- (PrerPeca1)/Pres x100
Table 4. Nodal

7770 L7570 L7110
-1.37 -1.26 -.95

. 9590 9760 1. 0000 . 8660 6110
-.49 -.31 -.29 -.20 -.25

. 9530 1.0550 1.0830 .9230 7000
-.04 .06 04 .14 11

.6100 1.0720 1.1810 .9720 4760
-.22 .34 25 .30 - 14
1.1930 1.2910 1.3110 1.1780

.42 .53 .41 .40
1.4220 1. 4320 1. 3680

.48 .56 .44
1.2810 1.3970

.59 .63

. 7290 Reference Power

17 % ERROR (1,1)  -- (Pres-Pca1) /Prer x100



