• Title/Summary/Keyword: Quantum well

Search Result 674, Processing Time 0.03 seconds

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Magnetic and Electric Transport Properties of MnTe Thin Film Grown by Molecular Beam Epitaxy (분자선 증착법에 의해 성장한 MnTe 박막의 자기적 및 전기수송 특성)

  • Kim, Woo-Chul;Bae, Sung-Whan;Kim, Sam-Jin;Kim, Chul-Sung;Kim, Kwang-Joo;Yoon, Jung-Bum;Jung, Myung-Hwa
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • MnTe layers of high crystalline quality were successfully grown on Si(100) : B and Si(111) substrates by molecular beam epitaxy (MBE). Under tellurium-rich condition and the substrate temperature around $400^{\circ}C$, a layer thickness of $700{\AA}$ could be easily obtained with the growth rate of $1.1 {\AA}/s$. We investigated the structural, magnetic and transport properties of MnTe layers by using x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and physical properties measurement system (PPMS). Characterization of MnTe layers on Si(100) : B and Si(111) substrates by XRD revealed a hexagonal structure of polycrystals with lattice parameters, ${\alpha}=4.143{\pm}0.001{\AA}\;and\;c=6.707{\pm}0.001{\AA}$. Investigation of magnetic and transport properties of MnTe films showed anomalies unlike antiferromagnetic powder MnTe. The temperature dependence of the magnetization data taken in zero-field-tooling (ZFC) and field-cooling (FC) conditions indicates three magnetic transitions at around 21, 49, and 210 K as well as the great irreversibility between ZFC and FC magnetization in the films. These anomalies are attributable to a magnetic-elastic coupling in the films. Magnetization measurements indicate ferromagnetic behaviour with hysteresis loops at 5 and 300 K for MnTe polycrystalline film. The coercivity ($H_c$) values at 5 and 300 K are 55 and 44 Oe, respectively. In electro-transport measurements, the temperature dependence of resistivity revealed a noticeable semiconducting behaviours and showed conduction via Mott variable range hopping at low temperatures.

Photovoltaic Efficiencies on Dye-Sensitized Solar Cells Assembled with Graphene-Linked TiO2 Anode Films

  • Kim, A-Young;Kim, Ji-Eun;Kim, Min-Young;Ha, Seung-Won;Tien, Ngyen Thi Thuy;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3355-3360
    • /
    • 2012
  • To promote the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs), graphene is introduced as a working electrode with $TiO_2$ in this study, because it has great transparency and very good conductivity. XRD patterns indicate the presence of graphene and $TiO_2$ particles in graphene-linked $TiO_2$ samples. Moreover, TEM pictures also show that the nano-sized $TiO_2$ particles are highly dispersed and well-linked onto the thin layered graphene. On the basis of the UV-visible spectra, the band gaps of $TiO_2$, 1.0 wt % graphene-$TiO_2$, 5.0 wt % graphene-$TiO_2$, and 10.0 wt % graphene-$TiO_2$ are 3.16, 2.94, 2.25, and 2.11 eV, respectively. Compared to pure $TiO_2$, the energy conversion efficiency was enhanced considerably by the application of graphene-linked $TiO_2$ anode films in the DSSCs to approximately 6.05% for 0.1 wt % graphene-$TiO_2$ with N719 dye (10.0 mm film thickness and $5.0mm{\times}5.0mm$ cell area) under $100mW/cm^2$ of simulated sunlight. The quantum efficiency was the highest when 1.0 wt % of graphene was used. In impedance curves, the resistance was smallest for 1.0 wt % graphene-$TiO_2$-DSSC.

Improved Photolysis of Water from Ti Incorporated Double Perovskite Sr2FeNbO6 Lattice

  • Borse, P.H.;Cho, C.R.;Yu, S.M.;Yoon, J.H.;Hong, T.E.;Bae, J.S.;Jeong, E.D.;Kim, H.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3407-3412
    • /
    • 2012
  • The Ti incorporation at Fe-site in the double perovskite lattice of $Sr_2FeNbO_6$ (SFNO) system is studied. The Ti concentration optimization yielded an efficient photocatalyst. At an optimum composition of Ti as x = 0.07 in $Sr_2Fe_{1-x}Ti_xNbO_6$, the photocatalyst exhibited 2 times the quantum yield for photolysis of $H_2O$ in presence of $CH_3OH$, than its undoped counterpart under visible light (${\lambda}{\geq}420nm$). Heavily Ti-doped $Sr_2Fe_{1-x}Ti_xNbO_6$ lattice exhibited poor photochemical properties due to the existence of constituent impurity phases as observed in the structural characterization, as well as deteriorated optical absorption. The higher electron-density acquired by n-type doping seem to be responsible for the more efficient charge separation in $Sr_2Fe_{1-x}Ti_xNbO_6$ (0.05 < x < 0.4) and thus consequently displays higher photocatalytic activity. The Ti incorporated structure also found to yield stable photocatalyst.

DFT and Time-dependant DFT Investigation of eLectronic Structure, Phosphorescence and Electroluminescence Properties of Iridium (III) Quinoxaline Complexes (Iridium (III) quinoxaline 착물의 전자 구조, 인광 및 전기 발광 특성에 대한 DFT 및 시간-의존 DFT 연구)

  • Zhou, Xiao-Qing;Li, Ying;Sun, Yan-Bo;Zhang, Hong-Xing
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.354-363
    • /
    • 2011
  • Quantum-chemistry study was explored to investigate the electronic structures, absorption and phosphorescence mechanism, as well as electroluminescence (EL) properties of three red-emitting Ir(III) complexes, $(fpmqx)_2Ir$(L) {fpmqx=2-(4-fluorophenyl)-3-methyl-quinoxaline; L=triazolylpyridine (trz) (1); L=picolinate (pic) (2) and L=acetylacetonate (acac) (3)}. The calculated results show that the HOMO distribution for 1 is mainly localized on trz moiety due to its stronger ${\pi}$-electron acceptor ability, and HOMO for 2 and 3 is the combination of Ir d- and phenyl ring ${\pi}$-orbital. The higher phosphorescence yields and differences among 1-3 are investigated in this paper. In addition, the reasons of higher EL efficiency of 2 than 1 and 3 have been rationalized.

An Analytical Model for the I-V Characteristics of a Short Channel AlGaN/GaN HEMT with Piezoelectric and Spontaneous Polarizations (압전 및 자발 분극을 고려한 단채널 AlGaN/GaN HEMT의 전류-전압 특성에 관한 해석적 모델)

  • Oh Young-Hae;Ji Soon-Koo;Suh Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.103-112
    • /
    • 2005
  • In this paper, in order to derive the current-voltage characteristics of n-AlGaN/GaN HEMTs with the piezoelectric and spontaneous polarizations, we suggested analytical solutions for the two-dimensional Poisson equation in the AlGaN and GaN regions by taking into account the longitudinal field variation, field-dependent mobility, and the continuity condition of the channel current flowing in the quantum well. Obtained expressions for long and short channel devices would be applicable to the entire operating regions in a unified manner. Simulation results show that the drain saturation current increases and the cutoff voltage decreases as drain voltage increases. Compared with the conventional models, the present model seems to provide more reasonable explanation for the drain-induced threshold voltage roll-off and the channel length modulation effect.

A Study on the analytical derivation of the L-I-V characteristics for a SCH QW Laser Diode (SCH 양자우물 레이저 다이오드에 대한 L-I-V 특성의 해석적도출에 관한 연구)

  • Park, Ryung-Sik;Bang, Seong-Man;Sim, Jae-Hun;Seo, Jeong-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.9-19
    • /
    • 2002
  • By using the thermionic emission model, the L-I-V(power-current-voltage) characteristics of a SCH(seperate confinement heterostructure) QW(quantum well) laser diode is analytically derived. We derived the relationships between the bulk carrier density of SCH regions and the confined carrier density of QW. The L-I-V characteristics is derived analytically by using current continuity equations. Solving the ambipolar diffusion equation under the condition of high level injection and charge neutrality, the current distribution in the SCH regions is considered. Results showed that the major factor affecting the laser I-V characteristics was the change of potential barrier at the cladding-SCH interface. Also the series resistance of a laser diode was decreased and the carrier injection was increased by increasing the forward flux of injection current from cladding to SCH region.

Lasing Characteristics of MQW Waveguide-type Depleted Optical Thristor Operating at 1.561um (1.561um에서 동작하는 MQW 도파로형 Depleted Optical Thyristor의 레이징 특성 분석)

  • Choi Woon Kyung;Kim Doo-Gun;Choi Young-Wan;Lee Seok;Woo Deok-Ha;Kim Sun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.29-34
    • /
    • 2004
  • We present the first demonstration of waveguide-type depleted optical thyristor laser diode with InGaAs/InGaAsP multiple quantum well structure. The measured switching voltage and current are 4.63 V and 10uA respectively. The holding voltage and current are respectively 0.59 V, 20uA. The lasing threshold current at the temperature of $25^{\circ}C$ and $10^{\circ}C$ are 111 mAA and 72.5 mA, respectively. The lasing wavelength is centered at 1.561um at a bias current equal to 1.41 times threshold.

Taekyo as Mind and Body Science (심신과학으로서의 태교)

  • Lee, Kyung-Hye;Bae, Kyung-Eui
    • Korean Parent-Child Health Journal
    • /
    • v.7 no.1
    • /
    • pp.61-72
    • /
    • 2004
  • This study investigates the history and principles of Korean traditional Taekyo by literary research. Taekyo is compared with prenatal care of modern western medicine, and its principles turn out to be just as scientific. Suggestions are made for a nurse to apply Taekyo principles to nursing care. Traditional Taekyo is an antenatal training which emphasizes how an expectant mother should carry herself (behavior) and a frame of mind she should have (her attitude) in order to produce a child with sound mind and body, as well as good personality. Though Taekyo has been originated in China 2,800 years ago, it has been recorded comprehensively in Korea in a series of publications such as Taekyoshingi, and Kyuhapchongseo, and passed on in a various verbal transitions like Samtaedo, Oliltaedo, etc. Taekyo principles can be explained by yin and yang theory, quantum theory, chaos theory, fetal programming, and social support theory. Some part of Taekyo shares the same scientific ground with prenatal care advocated by modern nursing care for women, where it emphasizes the role of a father, and participation of the whole family in helping an expectant mother. Applying Taekyo principles to nursing care is being done through Taekyo programs, which combine traditional Taekyo with modern prenatal care, in classes for child birth and many pregnant women participate. On the other hand, some internet Taekyo programs appear to be rather distorted and overzealous. A nurse has a responsibility to present a guideline and to monitor internet sites, so that pregnant women can understand the correct concept of traditional Taekyo before they practice it.

  • PDF

Effect of carrier concentration of ITO films on Quantum Efficiency Window in Heterojunction Silicon Solar Cells

  • Kim, Hyunsung;Kim, Sangho;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.314-314
    • /
    • 2016
  • In this paper, the effects of carrier concentration on dielectric constant of ITO films were investigated by spectroscopic ellipsometry. From SE results, we find the pronounced shift of the ${\varepsilon}1$ peaks toward high energy with concentration; while contrarily, the ${\varepsilon}2$ values at low energy region increases with decreasing concentration. These shifts are attributed to the Burstein-Moss and free-carrier absorption effects within ITO films. With increases carrier concentration, the values of extinction coefficients show quite different behaviors in range of wavelength from 200 to 1200 nm. The reduction in k at ${\lambda}{\leq}500nm$, while increasing at ${\lambda}{\geq}500nm$ was observed. The QE of HJ solar cells behaviors can be roughly classified into two regions: short-wavelengths (${\leq}650nm$) and long-wavelengths region (${\geq}650nm$). With increasing carrier concentration as well as energy band gap, QE shows improvement at short-wavelength, while at long-wavelength QE shows opposite trend. Widening band gap energy due to Burstein-Moss shift is the key to improve QE in short-wavelength; simultaneously FCA effect due to optical scattering is attributed to the reduction in QE at long-wavelength. In spite of band gap extension, Jsc calculated from QE decreases from 34.7 mA/cm2 to 33.2 mA/cm2 with increasing carrier concentration. It demonstrated that FCA effect may more govern Jsc in the HJ solar cells.

  • PDF