A Study on the analytical derivation of the L-I-V characteristics for a SCH QW Laser Diode

SCH 양자우물 레이저 다이오드에 대한 L-I-V 특성의 해석적도출에 관한 연구

  • Published : 2002.03.01

Abstract

By using the thermionic emission model, the L-I-V(power-current-voltage) characteristics of a SCH(seperate confinement heterostructure) QW(quantum well) laser diode is analytically derived. We derived the relationships between the bulk carrier density of SCH regions and the confined carrier density of QW. The L-I-V characteristics is derived analytically by using current continuity equations. Solving the ambipolar diffusion equation under the condition of high level injection and charge neutrality, the current distribution in the SCH regions is considered. Results showed that the major factor affecting the laser I-V characteristics was the change of potential barrier at the cladding-SCH interface. Also the series resistance of a laser diode was decreased and the carrier injection was increased by increasing the forward flux of injection current from cladding to SCH region.

본 논문에서는 thermionic emission 모델을 이용하여 SCH 양자우물 레이저 다이오드에 대한 L-I-V특성을 해석적으로 도출하였다. SCH의 bulk 캐리어와 양자우물 속박 캐리어의 관계를 도출하였고, 주입된 전류를 각 영역에서의 캐리어 재결합을 고려한 전류 연속 방정식을 만족하도록 하였다. 또한, high level injection과 전하 중성 조건하에 ambipolar 확산 방정식을 이용하여 캐리어 분포를 고찰하였다. 위 해석적인 모델을 이용하여 계산한 결과, 클래딩 영역의 전위장벽 변화가 전류 전압 특성 변화의 주요 원인으로 나타났다. 또한 thermionic emission에 의한 주입 전류의 forward flux 증가가 캐리어 주입을 증가시키고, 레이저 다이오드의 직렬 저항을 감소시키는 것을 보였다.

Keywords

References

  1. R. Nagarajan, J. E. Bowers, 'High speed lasers,' in Semiconductor Lasers I-Fundementals, E. Kapon, ed. Academic press, 1999, chap. 3
  2. S.M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, Inc., 1981
  3. P.K. Lau, T. Makino, 'Current-voltage characteristics of long wavelength quantumwell laser diodes,' J. Appl. Phys., Vol. 83, No. 3, pp. 1183-1186, 1998 https://doi.org/10.1063/1.366903
  4. P.K. Lau, T. Makino, 'Effects of p-doping and nonradiative processes on the current-voltage characteristics of long wavelength quantumwell laser diodes,' J. Appl. Phys., Vol. 84, No. 8, pp. 4087-4090, 1998 https://doi.org/10.1063/1.368694
  5. W. Sharfin, J. Schlafer, W.C. Rideout, B. Elman, E. Koteles, R.B. Lauer, J. LaCourse, F.R. Crawford, 'A novel mechanism for nonlinear gain in quantum well lasers,' Conference on Lasers and Electro-optics, CLEO '91, Talk CTuK2, Baltimore, 1991
  6. A.A. Grinberg, M.A. Alam, S.K. Sputz, 'Modeling of the Photoluminescence in Multi-quantum-well Heterostructure Laser Wafers,' IEEE J. Quantum Electronics, Vol. 35, No. 1, pp. 84-92, 1999 https://doi.org/10.1109/3.737624
  7. S.L. Chuang, Physics of Optoelectronic Devices, John Wiley & Sons, Inc., 1995
  8. L.A. Coldren, S.W. Corzine, 'Diode Lasers and Photonic Integrated Circuits,' John Wiley & Sons, Inc., 1995
  9. K. Frojdh, S. Marcinkevicius, 'Interwell carrier transport in InGaAsP multiple quantum well laser structures,' Appl. Phys. Lett., Vol. 69, No. 24, pp. 3695-3697, 1996 https://doi.org/10.1063/1.117192
  10. G. W. Taylor, P. R. Claisse, 'Transport Solutions for the SCH Quantum-Well Laser Diode,' IEEE J. Quantum Electronics, Vol. 31, No. 12, pp. 2133-2135, 1995 https://doi.org/10.1109/3.477738
  11. W. Freude, 'Comments and corrections-transport solutions for the SCH quantum-well laser diode: comment,' IEEE J. Quantum Electronics, Vol. 32, No. 12, pp. 2173, 1996 https://doi.org/10.1109/3.544765
  12. J. Wang, B. Smith, X. Xie, X. Wang, G.T. Burnham, 'High-efficiency diode lasers at high output power,' Appl. Phys. Lett., Vol. 74, No. 11, pp. 1525-1526, 1999 https://doi.org/10.1063/1.123604