• 제목/요약/키워드: Quantum information

검색결과 695건 처리시간 0.028초

A Design of Secure Communication Architecture Applying Quantum Cryptography

  • Shim, Kyu-Seok;Kim, Yong-Hwan;Lee, Wonhyuk
    • Journal of Information Science Theory and Practice
    • /
    • 제10권spc호
    • /
    • pp.123-134
    • /
    • 2022
  • Existing network cryptography systems are threatened by recent developments in quantum computing. For example, the Shor algorithm, which can be run on a quantum computer, is capable of overriding public key-based network cryptography systems in a short time. Therefore, research on new cryptography systems is actively being conducted. The most powerful cryptography systems are quantum key distribution (QKD) and post quantum cryptograph (PQC) systems; in this study, a network based on both QKD and PQC is proposed, along with a quantum key management system (QKMS) and a Q-controller to efficiently operate the network. The proposed quantum cryptography communication network uses QKD as its backbone, and replaces QKD with PQC at the user end to overcome the shortcomings of QKD. This paper presents the functional requirements of QKMS and Q-Controller, which can be utilized to perform efficient network resource management.

Teleportation into Quantum Statistics

  • Gill, Richard
    • Journal of the Korean Statistical Society
    • /
    • 제30권2호
    • /
    • pp.291-325
    • /
    • 2001
  • The paper is a tutorial introduction to quantum information theory, developing the basic model and emphasizing the role of statistics and probability.

  • PDF

The Future of Quantum Information: Challenges and Vision

  • Kim, Dohyun;Kang, Jungho;Kim, Tae Woo;Pan, Yi;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.151-162
    • /
    • 2021
  • Quantum information has passed the theoretical research period and has entered the realization step for its application to the information and communications technology (ICT) sector. Currently, quantum information has the advantage of being safer and faster than conventional digital computers. Thus, a lot of research is being done. The amount of big data that one needs to deal with is expected to grow exponentially. It is also a new business model that can change the landscape of the existing computing. Just as the IT sector has faced many challenges in the past, we need to be prepared for change brought about by Quantum. We would like to look at studies on quantum communication, quantum sensing, and quantum computing based on quantum information and see the technology levels of each country and company. Based on this, we present the vision and challenge for quantum information in the future. Our work is significant since the time for first-time study challengers is reduced by discussing the fundamentals of quantum information and summarizing the current situation.

Quantum Secret Sharing Scheme with Credible Authentication based on Quantum Walk

  • Li, Xue-Yang;Chang, Yan;Zhang, Shi-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3116-3133
    • /
    • 2020
  • Based on the teleportation by quantum walk, a quantum secret sharing scheme with credible authentication is proposed. Using the Hash function and quantum local operation, combined with the two-step quantum walks circuit on the line, the identity authentication and the teleportation of the secret information in distribution phase are realized. Participants collaborate honestly to recover secret information based on particle measurement results, preventing untrusted agents and external attacks from obtaining useful information. Due to the application of quantum walk, the sender does not need to prepare the necessary entangled state in advance, simply encodes the information to be sent in the coin state, and applies the conditional shift operator between the coin space and the position space to produce the entangled state necessary for quantum teleportation. Security analysis shows that the protocol can effectively resist intercept/resend attacks, entanglement attacks, participant attacks, and impersonation attacks. In addition, the quantum walk circuit used has been implemented in many different physical systems and experiments, so this quantum secret sharing scheme may be achievable in the future.

Quantum Communication Technology for Future ICT - Review

  • Singh, Sushil Kumar;Azzaoui, Abir El;Salim, Mikail Mohammed;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1459-1478
    • /
    • 2020
  • In the last few years, quantum communication technology and services have been developing in various advanced applications to secure the sharing of information from one device to another. It is a classical commercial medium, where several Internet of Things (IoT) devices are connected to information communication technology (ICT) and can communicate the information through quantum systems. Digital communications for future networks face various challenges, including data traffic, low latency, deployment of high-broadband, security, and privacy. Quantum communication, quantum sensors, quantum computing are the solutions to address these issues, as mentioned above. The secure transaction of data is the foremost essential needs for smart advanced applications in the future. In this paper, we proposed a quantum communication model system for future ICT and methodological flow. We show how to use blockchain in quantum computing and quantum cryptography to provide security and privacy in recent information sharing. We also discuss the latest global research trends for quantum communication technology in several countries, including the United States, Canada, the United Kingdom, Korea, and others. Finally, we discuss some open research challenges for quantum communication technology in various areas, including quantum internet and quantum computing.

Special Quantum Steganalysis Algorithm for Quantum Secure Communications Based on Quantum Discriminator

  • Xinzhu Liu;Zhiguo Qu;Xiubo Chen;Xiaojun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1674-1688
    • /
    • 2023
  • The remarkable advancement of quantum steganography offers enhanced security for quantum communications. However, there is a significant concern regarding the potential misuse of this technology. Moreover, the current research on identifying malicious quantum steganography is insufficient. To address this gap in steganalysis research, this paper proposes a specialized quantum steganalysis algorithm. This algorithm utilizes quantum machine learning techniques to detect steganography in general quantum secure communication schemes that are based on pure states. The algorithm presented in this paper consists of two main steps: data preprocessing and automatic discrimination. The data preprocessing step involves extracting and amplifying abnormal signals, followed by the automatic detection of suspicious quantum carriers through training on steganographic and non-steganographic data. The numerical results demonstrate that a larger disparity between the probability distributions of steganographic and non-steganographic data leads to a higher steganographic detection indicator, making the presence of steganography easier to detect. By selecting an appropriate threshold value, the steganography detection rate can exceed 90%.

Orbital Quantum Bit in Si Quantum Dots

  • 안도열;오정현;황성우
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.16-21
    • /
    • 2006
  • In this paper, current status of experimental and theoretical work on quantum bits based on the semiconductor quantum dots in the University of Seoul will be presented. A new proposal utilizing the multi-valley quantum state transitions in a Si quantum dot as a possible candidate for a quantum bit with a long decoherence time will be also given. Qubits are the multi-valley symmetric and anti-symmetric orbitals. Evolution of these orbitals is controlled by an external electric field, which turns on and off the inter-valley interactions. Initialization is achieved by turning on the inter-valley Hamiltonian to let the system settle down to the symmetric orbital state. Estimates of the decoherence time is made for the longitudinal acoustic phonon process.

  • PDF

양자 정보 기술을 위한 양자 광원 연구 동향 (Research Trend of Quantum Light Source for Quantum Information Technology)

  • 고영호;김갑중;최병석;한원석;윤천주;주정진
    • 전자통신동향분석
    • /
    • 제34권5호
    • /
    • pp.99-112
    • /
    • 2019
  • A quantum light source is an essential element for quantum information technology, including quantum communication, quantum sensor, and quantum computer. Quantum light sources including photon number state, entangled state, and squeezed state can be divided into two types according to the generation mechanism, namely single emitter and non-linear based systems. The single emitter platform contains atom/ion trap, solid-state defect/color center, two-dimensional material, and semiconductor quantum dot, which can emit deterministic photons. The non-linear based platform contains spontaneous parametric down-conversion and spontaneous four-wave mixing, which can emit probabilistic photon pairs. For each platform, we give an overview of the recent research trends of the generation, manipulation, and integration of single photon and entangled photon sources. The characteristics of quantum light sources are investigated for each platform. In addition, we briefly introduce quantum sensing, quantum communication, and quantum computing applications based on quantum light sources. We discuss the challenges and prospects of quantum light sources for quantum information technology.

Quantum Bacterial Foraging Optimization for Cognitive Radio Spectrum Allocation

  • Li, Fei;Wu, Jiulong;Ge, Wenxue;Ji, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권2호
    • /
    • pp.564-582
    • /
    • 2015
  • This paper proposes a novel swarm intelligence optimization method which integrates bacterial foraging optimization (BFO) with quantum computing, called quantum bacterial foraging optimization (QBFO) algorithm. In QBFO, a multi-qubit which can represent a linear superposition of states in search space probabilistically is used to represent a bacterium, so that the quantum bacteria representation has a better characteristic of population diversity. A quantum rotation gate is designed to simulate the chemotactic step for the sake of driving the bacteria toward better solutions. Several tests are conducted based on benchmark functions including multi-peak function to evaluate optimization performance of the proposed algorithm. Numerical results show that the proposed QBFO has more powerful properties in terms of convergence rate, stability and the ability of searching for the global optimal solution than the original BFO and quantum genetic algorithm. Furthermore, we examine the employment of our proposed QBFO for cognitive radio spectrum allocation. The results indicate that the proposed QBFO based spectrum allocation scheme achieves high efficiency of spectrum usage and improves the transmission performance of secondary users, as compared to color sensitive graph coloring algorithm and quantum genetic algorithm.