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Abstract 
 

This paper proposes a novel swarm intelligence optimization method which integrates 

bacterial foraging optimization (BFO) with quantum computing, called quantum bacterial 

foraging optimization (QBFO) algorithm. In QBFO, a multi-qubit which can represent a linear 

superposition of states in search space probabilistically is used to represent a bacterium, so that 

the quantum bacteria representation has a better characteristic of population diversity. A 

quantum rotation gate is designed to simulate the chemotactic step for the sake of driving the 

bacteria toward better solutions. Several tests are conducted based on benchmark functions 

including multi-peak function to evaluate optimization performance of the proposed algorithm. 

Numerical results show that the proposed QBFO has more powerful properties in terms of 

convergence rate, stability and the ability of searching for the global optimal solution than the 

original BFO and quantum genetic algorithm. Furthermore, we examine the employment of 

our proposed QBFO for cognitive radio spectrum allocation. The results indicate that the 

proposed QBFO based spectrum allocation scheme achieves high efficiency of spectrum 

usage and improves the transmission performance of secondary users, as compared to color 

sensitive graph coloring algorithm and quantum genetic algorithm. 
 

 

Keywords:  Quantum Bacterial Foraging Optimization; Quantum Computing; Cognitive 

Radio; Spectrum Allocation 
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1. Introduction 

In recent years, the swarm intelligence optimization methods inspired by biological evolution 

and animal swarm behaviors, such as ant colony optimization (ACO) [1] and particle swarm 

optimization (PSO) [2], have found their way into the realm of optimization algorithms and 

proved their effectiveness. The swarm intelligence optimization methods have found a 

strongly increasing number of applications in diverse fields, including in signal processing [3]. 
Bacteria Foraging Optimization (BFO), proposed by Passino [4], is a new comer to the 

family of nature swarm inspired optimization algorithms. BFO is inspired by the social 

foraging behavior of Escherichia coli (E. coli) bacteria. Similar to ACO and PSO, BFO are 

designed for function optimization by moving a swarm of individuals called bacteria in the 

search space. One major step in BFO is the chemotaxis which mimics bacteria searching for 

nutrients. After every fixed number of chemotaxis steps, the swarm of bacteria performs a 

reproduction and elimination step. 

Since its inception, BFO which mimics how bacteria forage over a landscape of nutrients to 

perform parallel nongradient optimization has drawn the attention of researchers from diverse 

fields of knowledge [5-8] due to its effectiveness in the optimization domain. It has already 

been applied to many real world problems and proved its effectiveness over many variants of 

GA and PSO [9]. However, according to mathematical analysis in [10], the chemotaxis 

employed by the classical BFO usually results in sustained oscillation, especially on flat 

fitness landscapes, when a bacterium cell is close to the optima. In dealing with complex 

problems, BFO has a low convergence behavior and performance decreases rapidly with an 

increase in the search space. To accelerate the convergence speed of the group of bacteria near 

the global optima and avoid its premature convergence, a novel quantum bacterial foraging 

optimization (QBFO) algorithm is proposed by merging BFO and quantum computing in this 

paper. 

The subject of quantum computing brings together ideas from classical information theory, 

computer science, and quantum physics [11]. Research on combining evolutionary computing 

and quantum computing has been started since late 1990s. It can be classified into two areas. 

One concentrates on generating new quantum algorithms using automatic programming 

techniques such as genetic programming [12]. The other concentrates on quantum-inspired 

evolutionary computing for a classical computer [13]. Encouraged by that quantum-inspired 

evolutionary algorithms show better performance on solving combinatorial optimization 

problems than their classical counterparts [14][15], this paper proposes a novel bacterial 

foraging optimization algorithm, called QBFO algorithm, which is based on the concept and 

principles of quantum computing such as a qubit, multiqubit, superposition of states and 

quantum gates. 

In QBFO, a multiqubit is used to represent a bacterium, and quantum rotation gate is used to 

mimic chemotaxis. A multiqubit system (for example n-qubit system) has available 2
n
 

mutually orthogonal quantum states, so the quantum bacterium with multiqubit has the 

advantage that it can represent a linear superposition of states (binary solutions) in search 

space probabilistically. A quantum rotation gate is defined as a chemotactic operator of QBFO 

to drive the individual bacterium toward better solutions and eventually toward a single state. 

On a quantum bacteria-based algorithm for communication, there are some previous work 

address here. The reference [16] proposed a bacteria-based nanonetwork for communication 

between eukaryotic cell sized nano devices. The simulation results show that the performance 
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in delay, capacity and throughput is 4 orders of magnitude higher than the other molecular 

communication approaches. In [17], a new nano network architecture using flagellated 

bacteria was proposed to cover the medium-range. By using the ability of conjugation and 

chemotaxis-based motility, an opportunistic routing process in bacteria communication 

nanonetwork was proposed in [18] and an approach enable multi-hop transmission based 

bacteria nanonetworks was proposed in [19]. The reference [20] researched on applying a 

quantum bacteria-based optimization algorithm in spectrum sensing. The simulation results 

proved that spectrum sensing method based on quantum BFO algorithm is superior to the 

previous intelligence algorithms. 

In this paper, we focus on applying our proposed QBFO to solve spectrum allocation 

problem in Cognitive Radio (CR) [21].  

Wireless spectrum is one of the most valuable natural resource. The demand for spectrum 

has been growing dramatically with the rapid development of the telecommunication industry, 

which has caused scarcity in the available spectrum bands. Furthermore, the underutilization 

of the licensed spectrum bands makes the situation even worse [22]. CR has very promising 

potential to improve spectrum utilization by allowing unlicensed Secondary Users (SUs) to 

access the spectrum dynamically without disturbing licensed Primary Users (PUs) [21]. A key 

challenge in CR network is how to adaptively and efficiently allocate spectrum among SUs 

according to the surrounding environment [23][24]. 

There exist a lot of research efforts on the problem of spectrum allocation in CR, including 

game theory [25], pricing and auction mechanisms [26][27], local bargaining [28], and graph 

coloring [29][30]. Color sensitive graph coloring (CSGC) [30] algorithm has attracted a lot of 

attention, as it can realize flexible spectrum allocation. However, the computational 

complexity of the CSGC algorithm varies with the number of available spectrums and users, 

which make spectrum allocation to become an NP-Hard problem. As the allocation model can 

be inherently seen as an optimization problem, spectrum allocation approaches based on 

evolutionary algorithms, such as genetic algorithm (GA) [31] and quantum genetic algorithm 

(QGA) [32][33], are proposed for CR recently. However, evolutionary algorithms based 

spectrum allocation has some shortage on convergence and are hard to reach global 

optimization. A novel spectrum allocation scheme based on QBFO is proposed in this paper.  

The work presented here has focused on the formulation of the QBFO algorithm, which 

takes advantage of BFO and quantum-inspired evolutionary computing such as QGA. The 

work in [34] uses a different swarming pattern, and the work in [20][35] takes a different 

quantum representation of a bacterium. While our proposed QBFO takes a new representation 

of a bacterium, and a new quantum chemotaxis operator and a new quantum 

elimination-dispersal, which were not considered in these earlier studies. The simulations of 

QBFO based spectrum allocation have been conducted as compared to a very popular 

spectrum allocation algorithm known as CSGC and QGA, with respect to the following 

performance measures: solution quality and convergence speed. The simulation results show 

that the proposed scheme achieves high efficiency of spectrum usage and improvement of 

SUs’ performance. 

The remainder of the paper is organized as follows: in section 2, we propose a quantum 

BFO. Section 3 provides detailed comparison between the classical BFO and its quantum 

variants over a test suite of 4 well-known numerical benchmarks. In section 4, a novel 

spectrum allocation scheme based on QBFO is proposed and analyzed. Finally, conclusions 

are drawn in section 5.  
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2. Designing of Quantum Bacterial Foraging Algorithm 

2.1 Quantum Representation of a Bacterium 

Inspired by the concept of quantum computing and quantum-inspired evolutionary algorithm 

[15], we designed a novel quantum representation of a bacterium in QBFO, called a Quantum 

bacterium (Q-bacterium), which is defined below: 
 

1 2

1 2

...
,   1,2, ,

...

t t t

t i i iM

i t t t

i i iM

q i S
  
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                                    (1) 

 

where M is the number of multiqubit, which is defined with a pair of numbers (α, β) as [α  β]
T
. 

(α, β) corresponds a qubit expressed in 0 1 ( , )
T

      . 

QBFO with Q-bacterium representation has a better characteristic of population diversity 

than other representations, since it can represent linear superposition of states probabilistically. 

Only one Q-bacterium such as (1) is enough to represent 2
M

 states, but in binary representation 

at least 2
M

 strings. 
Research results shows that E.coli bacteria have an interesting group behavior [36]. A group 

of E.coli cells arrange themselves in a traveling ring by moving up the nutrient gradient. The 

cells keep certain distance and exchange food information through various ways. It increases 

their understanding of the environment and so increases their survival chances. The bacteria 

swarm in QBFO is composed of a group of Q-bacteria. The tth population is 
 

1 2 S( ) ( , ,...., )t t tQ t q q q                                                           (2) 

 

where S is the size of population. 

2.2 Quantum Chemotaxis 

Chemotaxis simulates the movement of an E.coli cell through straight swimming and 

tumbling via flagella. If the bacterium senses that it is moving in the correct direction (toward 

attractant/away from repellent), it will keep swimming in a straight line for a longer time 

before tumbling. If it is moving in the wrong direction, it will tumble sooner and try a new 

direction at random. In other words, E. coli bacteria use temporal sensing to decide whether 

their situation is improving or not. In this way, it finds the location with the highest 

concentration of nutrition (usually the source) quite well. Even under very high concentrations, 

it can still distinguish very small differences in concentration. In the presence of a chemical 

gradient bacterium will chemotaxis, or direct their overall motion based on the gradient. 

In QBFO, chemotaxis operation is not performed as same as original BFO [36] because 

Q-bacteria can be in quantum superposition state. A Q-gate is defined as a chemotaxis 

operator of QBFO, by which operation the updated qubit should satisfy the normalization 

condition, 2 2| | | | 1    , where   and    are the values of the updated qubit. The 

following rotation gate is used as a Q-gate in QBFO, such as: 
 

        
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U
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where θ is a rotation angle of each Q-bit toward either 0 or 1 state depending on its sign. θ 
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should be designed in compliance with the application problem. The adjustment operation is 

as follows: 
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where θm is rotating angle and ( , )m m m ms     . ( , )m ms    is used to control the rotation 

direction and 
m  is used to control the size of the rotation angle which should be designed in 

compliance with the application problem. 
Quantum chemotaxis operator acts on the linear superposition of states of all qubits in 

Q-bacteria and changes the phase information of qubit, as well as the amplitude information. 

As the result, the position of the Q-bacterium is updated. 

2.3 Quantum Reproduction 

Quantum reproduction is an evolutionary process based on survival of the fittest. Let 
 

1

( ) ( )
cN

j=

Jhealth i = fitness i, j                                                      (5) 

 

be the health of the ith Q-bacterium (a measure of how many nutrients it got over its lifetime 

and how successful it was at avoiding noxious substances), where Nc is the number of 

chemotactic steps and ( )fitness i, j  is the fitness function value of ith Q-bacterium at jth 

chemotactic step. 
The less healthy Q-bacteria eventually die while each of the healthier Q-bacteria asexually 

split into two bacteria, which are then placed in the same location. This keeps the swarm size 

constant. 

2.4 Quantum Elimination-dispersal 

Gradual or sudden changes in the survival environment, such as a significant local rise of 

temperature, may kill or disperse a group of bacteria that are currently in a region with a high 

concentration of nutrient gradients. To simulate this phenomenon in QBFO, quantum 

elimination-dispersal is performed after several steps of quantum chemotaxis and quantum 

reproduction. In this process, some Q-bacteria are dispersed at random with a very small 

probability Ped while the new replacements are randomly initialized over the search space as: 
 

2
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where Xn is the nth state represented by the binary string 
1 2( , ,..., )Mx x x , where ,  1,...,mx m M  

is either 0 or 1 according to the probability of either 
2

t

m
  or 

2
t

m
 , respectively. 

2.5 The Procedure of QBFO 

The detailed pseudo-code of the complete QBFO algorithm is shown in Table 1.  
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Table 1. The pseudo-code of QBFO 

Step Do 

1 

Initialize parameters p, S, Nc, Ns , Nre, Ned , Ped . where 
p: dimension of the search space 
S: total number of bacteria in the population 
Nc: number of quantum chemotactic steps 
Nre: the number of quantum reproduction steps 
Ned : the number of quantum elimination–dispersal events 
Ped : quantum elimination-dispersal probability 

2 Let t,j,k,l = 0 

3 

Initialization Q-bacteria population Q (t), 0

m  and 0

m  of all 

0

iq  are initialized with 1 2 . It means that one Q-bacterium 

0

i
q  represents the linear superposition of all possible states 

with the same probability. The state of 
0

i
q  is as (1). 

4 
Make P(0) by observing the states of Q(0). Quantum state Q(0) 
collapses to P(0), which is the set of binary solutions 

5 
Evaluate P(0). Each binary solution is evaluated to give a level 
of its fitness 

6 
Store the best solutions among P(0) into B(0), the initial best 
solutions are then selected among the binary solutions 

7 

while (not termination-condition) do 
begin 
  1t t   
  while (l≤Ned) do Quantum Elimination–dispersal 
  begin 
    1l l   
    while (k≤Nr) do Quantum Reproduction 
    begin 
      1k k   
      while (j≤Nc) do Quantum Chemotaxis 
      begin 
        1j j   

8 
        Make P(t) by observing the states of Q(t-1). Quantum state 
Q(t-1) collapses to P(t), which is the set of binary solutions 

9 
        Evaluate P(t). Compute fitness function, obtain the best 
fitness of the bacterium as the target of next evolution values 

10 
        Update Q(t) using Q-gates. Q-bacteria in Q(t) are updated 
by applying Quantum rotation gates 

11         Store the best solutions among B(t-1) and P(t) into B(t) 

12 
        Store the best solution b among B(t) 
      end 

13 
      Compute ( )Jhealth i . Sort Q-bacteria in order of ascending 
cost 

14 

      Quantum Reproduction. The half of the bacteria with the 
better values split (this process is performed by placing the 
copies that are made at the same location as their parent and the 
other half is eliminated 
    end 

15 

    Quantum Elimination–dispersal. Generate a random number 
rand, a Q-bacterium is eliminated if rand<Ped . Disperse 
another one to a random state as eq. (6). 
  End 

16 

   if  (migration-condition) 
      then migrate b or 

t

jb  to B(t) globally or locally, 
respectively 
end 
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3. Experiments and Results over Benchmark Functions 

This section presents some comparisons among the performances of the proposed QBFO, the 

original BFO and QGA which is a typical algorithm of quantum evolutionary computation. All 

methods have been applied to several benchmark test functions as depicted in Table 2 in order 

to check the effect of the proposed QBFO in the efficiency and the convergence speed. 

3.1 Test Functions 

Our test suite includes 4 well-known benchmark functions of varying complexity. The 

formulas of these functions are presented in Table 2. 
The Sphere function (f1) is continuous, convex and unimodal with only one global minimum. 

The others are multimodal with a considerable number of local extremes in the region of 

interest. The Needle-in-haystack function (f2) has one global maximum with four local 

maxima, and the function behaves like a needle in the haystack (the function values for points 

in the space outside the narrow peaks give very little information on the location of the global 

optimum). The Schaffer’s F6 function (f3) has one global maximum with numerous local 

maxima, the difficulty in this function is that the size of the potential maxima that need to be 

overcome to get to a minimum increases the closer one gets to the global minimum. The 

Multi-peak function (f4) has one global maximum with huge number of local maxima, the 

difficulty in this function is asymmetric and having the global maximum at the edge of the 

search space. Table 2 summarizes the optima and search ranges used for all the functions. The 

contours of all the test functions are illustrated in Table 2. 
 

Table 2. Description of the Benchmark Function Used 

Function name Formula Optima 
Search 
domain 

Contour 

Sphere function 

(f1) 
2 2

1( )f x, y = x + y  1(0 0) 0f , =  100 , 100x y    

 

Needle-in-haystack 

function 

(f2) 

2 2 2 2

2 22

3
( ( )
0.

)
5

(
0

) + x + y
+ x + y

f x, y =  2 (0 0) 3600f , =  5.12 , 5.12x y    

 

Shaffer’s F6 

function 

(f3) 

2 2 2

3 2 2 2

0.5
( ) 0.5 +

(1 0.001 ( ))

sin x + y -
f x, y =

+ x + y
 3(0 0) 1f , =  100 , 100x y    
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Multi-peak 

function 

(f4) 

4 ( ) 1 1

( 1) 1 1

f x, y = xsin y x cos y x

y cos y x sin y x

    

     
 4 (-512 512)

511.7319

f ,

=

  512 , 512x y    

 
 

3.2 Parameter Settings 

For the BFO, we chose the population size of the bacteria S=40, the number of chemotaxis 

Nc=50, the number of reproduction steps Nre=5, the number of elimination and dispersal events 

Ned=2, the probability of elimination and dispersal Ped=0.25, the depth of the attractant 

released by the cell dattract=0.1, the width of the attractant signal wattract=0.2, the height of the 

repellent effect hrepellant=dattract=0.1, and the width of the repellent wrepellant=2. The size of the 

step taken in the random direction specified by the tumble C was set as 0.1 for benchmarks f1 

and f3. For benchmarks f2 and f4 we chose C=0.001.  For the QBFO, the parameter values of S, 

Nc, Nre, Ned, and Ped were kept exactly same as BFO. We fixed the length of the Quantum 

bacterium M=44, and the size of the rotation angle 0.08m   . For the QGA, we chose 

population size S=40, the length of the quantum chromosome len=44, the probability of cross 

pc=0.7, the probability of variation pm=0.15, the size of rotation angle 0.08m   , and the 

maximal generation number maxgen=500. 

3.3 Results and Discussions 

Twenty independent runs of the three competitor algorithms were carried out on each problem, 

and the experimental results are presented in Table 3. In the table, the best results among the 

algorithms are shown in bold. The graphs presented in Fig. 1-4 illustrate the evolution of best 

fitness found by three algorithms averaged for 20 runs for each function. 

Table 3 illustrates the comparisons of the three algorithms on the benchmark functions. 

From Table 3, it is observed that for all test problems, the proposed QBFO is superior to other 

two algorithms on the optimization problems although it converges slower sometimes (i.e. as 

shown in Fig. 1). The best value and the mean best value of the proposed method are closest to 

or even the same as the optimal value. QBFO is the most stable as the standard deviation of 

QBFO is smallest. 

For convenience to show better search ability, Fig. 1-4 illustrate the comparisons on 

functions f1-f4. In general, the graphs in Fig. 1-4 show that the QBFO could converge to the 

global optimum keeping a good diversity and high speed when it conducts the optimization of 

Sphere, Needle-in-haystack, Shaffer’s F6 and Multi-peak problems.  

As evident from Table 3 and Fig. 1, it obviously shows that the Sphere function is easy to 

solve. It is shown that the QBFO converges slower than BFO and QGA, but the average run 

time of QBFO is less than QGA and the convergence runs of QBFO is more than QGA. QBFO 

hits the success 20 times by 20 runs. 

For Needle-in-haystack function, it is evident from Table 3 and Fig. 2 that QBFO is the 

fastest algorithm in reaching the target global value. The frequency of hitting the optima of 

QBFO is 20 times in 20 runs, and that of BFO is only 6 times. 

For Shaffer’s function, it can be easily observed from Table 3 and Fig. 3 that QBFO arrives 

at the global optimum value fastest. The frequency of hitting the optima of QBFO is 15 times 

in 20 runs, and BFO cannot reach to the global optimum value. 
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According to Table 3 and Fig. 4, QBFO remained the best performance in the convergence 

rate, the best value, the mean best value and the frequency of hitting the optima. 
 

Table 3. Experimental Results for 20 Independent Runs on four Benchmark Functions 

Function name Algorithm Best value 
Worst 

value 

Mean best 

value 

Standard 

deviation 

Average 

iterations 

Average 

run time 

(s)  

Convergence 

runs 

Sphere 

function 

(f1) 

BFO 2.6980e-07 8.6672e-04 6.8164e-05 1.8469e-04 156.67 0.932624 20 

QGA 1.3296e-04 6.1000e-02 5.4486e-03 1.2980e-02 421.52 5.669402 9 

QBFO 1.1369e-09 1.6220e-04 1.5472e-05 4.1785e-05 284.81 3.743355 20 

Needle-in-haystack 

function 
(f2) 

BFO 3600 2748.8 3004.2 400.2022 481.45 2.551758 6 

QGA 3600 3594 3598.7 1.6706 361.8 4.893244 12 

QBFO 3600 3599 3599.9 0.2471 295.3 3.808226 20 

Shaffer’s F6 

function 

(f3) 

BFO 0.9903 0.7268 0.9457 0.0656 500 2.873371 0 

QGA 0.9982 0.9900 0.9918 0.0031 448.40 6.312885 4 

QBFO 1.0000 0.9903 0.9989 0.0030 230.40 3.001256 15 

Multi-peak 
function 

(f4) 

BFO 511.7078 497.2463 503.7723 4.5548 479.85 2.370211 3 

QGA 511.5752 501.3417 508.4660 2.9080 436.10 5.800089 4 

QBFO 511.7319 501.8813 510.7167 2.2493 182.00 2.490855 15 
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Fig. 1. Convergence Curve of three algorithms for f1 
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Fig. 2. Convergence Curve of three algorithms for f2 
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Fig. 3. Convergence Curve of three algorithms for f3 

 

 
Fig. 4. Convergence Curve of three algorithms for f4 

 

According to the comparison analysis above, it is obvious to know that the proposed QBFO 

can keep a better diversity to develop the virgin space and have the best ability to reach the 

optimum. The relative results showed that QBFO is a good method to improve the global 

ability of BFO. QBFO shows good convergence performance not only for simple smooth 

function such as Sphere function but also for complex function such as multi-peak function 

and nonlinear optimization problem. The reason is that QBFO takes advantage of quantum 

computation, which provides the bacteria with more intelligence to search the global optimum, 

and contribute to the global optimization ability. 

It can be shown from the above analysis that, the QBFO algorithm does not have the best 

performance in all aspects. The convergence of the QBFO algorithm is the best among the 

three algorithms and the complexity of QBFO algorithm is between BFO and QGA. In 

addation, the QBFO algorithm has better performance for complex optimizaiton problems. 

Therefore, the QBFO algotithm is a good choice for optimization problems considering the 

convergence, time complexity and stability. 

4. Application to Cognitive Radio Spectrum Allocation 

4.1 Cognitive Radio Spectrum Allocation Model 

There are several models proposed for the problem of spectrum allocation in CR, such as 

pricing and auction mechanisms [26][27], local bargaining [28], and graph coloring [29][30]. 
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The general CR spectrum allocation model in [30] called graph coloring model assumes that 

the environmental conditions are static during the time it takes to perform spectrum 

assignment, and CSGC is used to solve the allocation problem. The model belongs to “0, 1” 

format, which “0” and “1” can represent all the necessary modeling information. It is more 

simple and can get more accurate performance comparing with other models. We use graph 

coloring model for cognitive radio spectrum allocation.  

The graph coloring spectrum allocation model can be described by channel availability 

matrix, channel reward matrix, interference constraint matrix, and conflict free channel 

assignment matrix[30]. Consider a network of N cognitive users (SUs) indexed from 1 to N 

competing for M spectrum channels indexed 1 to M which are non-overlapping orthogonal. 

The channel availability matrix denotes the channel availability, which is defined as: 
 

                                  , ,| 0,1 , 1, , 1,n m n m N M
l l n N m M


   L                                 (7) 

 

where L  is an N by M binary matrix , if and only if channel m is available at cognitive user n, 

, 1n ml  ; otherwise 
, 0n ml  .  

The channel reward matrix represents the channel reward described by: 
 

                                             , , 1, , 1,n m N M
b n N m M


  B                                         (8) 

 

where B  is an N by M matrix representing the channel reward, where 
,n mb  represents the 

maximum bandwidth/throughput that can be obtained by cognitive user n using channel m.  

As two or more cognitive users may use the same channel at the same time, they may 

interfere with each another. We use the interference constraint matrix to denote the 

interference constraints among cognitive users, which is mathematically represented as: 

 

                                   , , , ,| 0,1 , 1, , 1,n k m n k m
N N M

c c n N m M
 

   C                                  (9) 

 

where C is an N by N by M matrix denoting the interference constraints among cognitive users, 

where , , 1n k mc   if cognitive users n and cognitive users k interfere with each other as they use 

channel m simultaneously and 
, , 1n k mc   otherwise. The constraint depends on channel 

availability when n k , i.e., 
, , ,1n n m n mc l  . 

The conflict free channel assignment matrix is defined as: 

 

                                  , ,| 0,1 , 1, , 1,n m n m N M
a a n N m M


   A                                (10)  

       

where A is an N by M binary matrix. If channel m is assigned to cognitive user n, , 1n ma  . 

Matrix A  must satisfy all the interference constraints defined by C, that is: 
 

, , , ,1,  if 1,

 1 , ,  1

n m k m n k ma a c

n k N m M

  

    
                                                        (11) 
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Given a conflict free channel assignment matrix A , the reward user n obtains is described 

as , ,1

M

n n m n mm
r a b


  , and the reward vector that each user gets for a given channel assignment 

is mathematically represented as:  
 

 , ,1
1

M

n n m n mm
N

R r a b




                                                     (12) 

 

Let 
,

L C
 be the set of conflict free channel assignment for a given L and C . We define 

network utilization as: 
 

 
1

N

nn
U R r


                                                             (13) 

 

The spectrum allocation is to realize the maximization of network utilization  U R . 

According to the model above, we can define the spectrum allocation problem as the 

following optimization problem: 
 

 
,

* arg maxU R



L CA

A                                                         (14) 

 

where *
A  is the optimal conflict free channel assignment matrix. 

We summarize the experssions and value ranges used for all the above matrices as Table 

4. 

 
Table 4. Description of the matrices used 

Matrix name Mathmatical expression Value range 

Channel availability matrix(N)   , ,
| 0,1

n m n m N M
l l


 L  1, , 1,n N m M   

Channel reward matrix(B)  ,n m N M
b


B  1, , 1,n N m M   

Interference constraint matrix(C)    , , , ,
| 0,1

n k m n k m N N M
c c

 
 C  1, , 1,n N m M   

Conflict free channel assignment 

matrix(A) 
  , ,

| 0,1
n m n m N M

a a


 A  1, , 1,n N m M   

 

4.2 QBFO Based Cognitive Radio Spectrum Allocation 

In this work, assume each quantum bacterium after being observed represent one possible 

spectrum allocation scheme, that is, a bacterium specifies a possible conflict free channel 

assignment. As , 0n ma   when , 0n ml  , if we use one bit to encode every element in A , there 

will be a lot of redundancy in the bacterium. Inspired by chromosome encoding in [32], we 

encode only those elements which may take the value 1, i.e., ,n ma  where  ,n m  satisfies , 1n ml  . 

As a result, the length of the binary string is equal to the number of elements for 1 in L , and 

then the search space is greatly reduced. Fig. 5 gives the structure of an example bacterium, 

where 4, 4N M  . Note that encoding all the elements needs 16 bits, while encoding only the 

elements with underline only needs 8 bits. For evaluating the fitness of the bacteria, it is 

necessary to map the bacteria to the channel assignment matrix, as the arrows show in Fig. 5. 
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Fig. 5. The structure of an example bacterium 

 

The value of every qubit in the Q-bacteria after being observed is randomly generated at the 

initial population and determined by quantum chemotaxis, quantum reproduction and 

quantum elimination-dispersal as defined in section 2. Hence, it may not always satisfy the 

interference constraints defined by C . In order to satisfy the interference constraints, we 

design the following operations: (1) for all  1m m M  search all n and k that satisfies 

, , 1n k mc  , and (2) check whether both of the two bits corresponding to the element in the nth 

line and mth column of A  and the element in the kth line and mth column of A  are equal to 1;  

if so, randomly set one of them to 0. 

The searching direction of QBFO is based on the fitness of the Q-bacteria in the population. 

We consider two objective functions as the fitness function, respectively: 

(1) Max-Sum-Reward (MSR): 
 

, ,1 1

N M

n m n mn m
f a b

 
                                                         (15) 

 

(2) Max-Proportional-Fair(MPF): 
 

 
1 10

4

, ,11
10

N M

n m n mmn
f a b 


                                               (16) 

The proposed QBFO based spectrum allocation algorithm proceeds as following 

pseudo-code shown in Table 5.  
 

Table 5. The pseudo-code of QBFO based spectrum allocation algorithm 

Step Do 

1 

Initialize parameters p, S, Nc, Ns , Nre, Ned , Ped,,L, B,C . where 
p: dimension of the search space 
S: total number of bacteria in the population 
Nc: number of quantum chemotactic steps 
Nre: the number of quantum reproduction steps 
Ned : the number of quantum elimination–dispersal events 
Ped : quantum elimination-dispersal probability 

  
, ,

| 0,1
n m n m N M

l l


 L : channel availability matrix 
 

,n m N M
b


B : channel reward matrix 
   

, , , ,
| 0,1

n k m n k m N N M
c c

 
 C : interference constraint matrix 

2 Set t,j,k,l = 0, 
,

1 1

N M

n m

n m

p l
 

 and set   1 ,
, | 1

n m
n m l L  

3 
Initialization Q-bacteria population Q (t), 0

m  and 0

m  of all 
0

iq  are initialized with 1 2 .  
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4 Make P(t) by observing the states of Q(t).  

5 

Map w th  1,2, ,w p  bit of t

vp to 
,n ma , where  ,n m  

is the w th element in 
1

L . For all m , search all  ,n k that 
satisfies

, , 1n k mc  and check whether both of the two bits 
corresponding to the element in the n th line and m th column 
of A  and the element in the k th line and m th column of A  
are equal to 1; if so, randomly set one of them to 0. 

6 
Evaluate P(t) using test function of (15) or  (16). Store the 

best solutions among P(t) into B(t), the initial best solutions are 
then selected among the binary solutions. 

7 

while (not termination-condition) do 
begin 
  1t t   
  while (l≤Ned) do Quantum Elimination–dispersal 
  begin 
    1l l   
    while (k≤Nr) do Quantum Reproduction 
    begin 
      1k k   
      while (j≤Nc) do Quantum Chemotaxis 
      begin 
        1j j   

8 
        Make P(t) by observing the states of Q(t-1). Repeat the 
processes in step5.  

9 
        Evaluate P(t) using test function of (15) or  (16). Compute 
fitness function, obtain the best fitness of the bacterium as the 
target of next evolution values 

10 
        Update Q(t) using Q-gates. Q-bacteria in Q(t) are updated 
by applying Quantum rotation gates 

11         Store the best solutions among B(t-1) and P(t) into B(t) 

12 
        Store the best solution b among B(t) 
      end 

13 
      Compute ( )Jhealth i . Sort Q-bacteria in order of ascending 
cost 

14 

      Quantum Reproduction. The half of the bacteria with the 
better values split (this process is performed by placing the 
copies that are made at the same location as their parent and the 
other half is eliminated 
    end 

15 

    Quantum Elimination–dispersal. Generate a random number 
rand, a Q-bacterium is eliminated if rand<Ped . Disperse 
another one to a random state as eq. (6). 
  End 

16 
   if  (migration-condition) 
      then migrate b or 

t

jb  to B(t) globally or locally, respectively 
end 

 

4.3 Experimental Results and Performance Evaluation 

The commonly used algorithm to solve the spectrum allocation problem is Color Sensitive 

Graph Coloring (CSGC) algorithm. In order to evaluate the performance of the proposed 

QBFO-based spectrum allocation scheme, we compare it with CSGC and QGA in our 

simulations. Numerical experiments were executed with QBFO, CSGC and QGA. The QBFO 

parameters were set to the following values: S=20, Nc=50, Nre=5, Ned=2, Ped=0.25, 

0.08
m
   , and iteration times as 500. 

Fig. 6 shows the network rewards over 50 experiments where 5, 4N M  . , ,L B C are kept 
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the same under all experiments under a particular objective, which are generated by referring 

to appendix I in [30]. It is obvious that the proposed QBFO-based spectrum allocation 

algorithm can obtain better sum reward, compared to the CSGC and QGA. 

Refer to Fig. 7 and Fig. 8, we can see the comparative results of the convergence processes 

of applying QBFO and QGA to solve the spectrum allocation problem. It is shown that QBFO 

can converge toward the optimal solution more quickly than QGA, and QBFO also 

outperforms QGA under objectives MSR and MPF in the performance of convergence value. 

Fig. 9 shows the spectrum allocation performance for QBFO, QGA and CSCG with varying 

numbers of cognitive users when 30M  , and Fig. 10 shows the corresponding 

experiment result with varying numbers of spectrums when 15N  . Compared to the other 

two algorithms, QBFO-based scheme can achieve best realization of the maximization of 

system utilization. 
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Fig. 6. Spectrum allocation performance for QBFO, QGA and CSCG 
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Fig. 7. Spectrum allocation performance (sum reward) for QBFO and QGA 
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Fig. 8. Spectrum allocation performance (fair reward) for QBFO and QGA 
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Fig. 9. Spectrum allocation performance with varying numbers of cognitive users N 
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Fig. 10. Spectrum allocation performance with varying numbers of spectrums M 

 

5. Conclusion 

In this paper, a novel QBFO is proposed, which is based on the BFO and quantum computing. 

A novel quantum bit expression mechanism called quantum bacteria is employed and the 

quantum chemotaxis is adopted to update the Q-bacteria. Quantum reproduction is performed 
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after several steps of quantum chemotaxis, which makes most bacteria get together and 

accelerates convergence of the algorithm. Then quantum dispersal operation is performed on 

the bacteria swarm with a certain probability, which can expand the searching space and 

prevent the algorithm to fall into the local optimal value. The key to the application of QBFO 

to a new problem is to identify an appropriate representation for the problem (to be represented 

as a graph searched by many quantum bacteria). The simulated results in solving spectrum 

allocation problem in cognitive radio show that QBFO is superior to CSGC and QGA. 

Future research may focus on extending the analysis presented in this paper to a group of 

quantum bacteria working on a multidimensional fitness landscape and also include effect of 

the quantum chemotaxis and elimination–dispersal events in the same. 
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