• Title/Summary/Keyword: Quantum Computer

Search Result 264, Processing Time 0.027 seconds

Simulation and randomized measurement of topological phase on a trapped-ion quantum computer

  • Cheong Eung Ahn;Gil Young Cho
    • Journal of the Korean Physical Society
    • /
    • v.81
    • /
    • pp.258-266
    • /
    • 2022
  • Noisy intermediate scale quantum (NISQ) computers are a promising platform for studying many-body quantum states, such as interacting topological states. Here we prepare a one-dimensional bosonic symmetry-protected topological (SPT) phases using variational quantum eigensolver (VQE) algorithms, and demonstrate the randomized measurement of the corresponding many-body topological invariant, on a trapped-ion quantum computer. We show that the randomized measurement protocol is applicable in real machines, with the dominant error arising from the imperfect preparation of the quantum states.

Technical Trend and Challenging Issues for Quantum Computing Control System (양자컴퓨터 제어 기술)

  • Jeong, Y.H.;Choi, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.87-96
    • /
    • 2021
  • Quantum computers will be a game-changer in various fields, such as cryptography and new materials. Quantum computer is quite different from the classical computer by using quantum-mechanical phenomena, such as superposition, entanglement, and interference. The main components of a quantum computer can be divided into quantum-algorithm, quantum-classical control interface, and quantum processor. Universal quantum computing, which can be applied in various industries, is expected to have more than millions of qubits with high enough gate accuracy. Currently, It uses general-purpose electronic equipment, which is placed in a rack, at room temperature to make electronic signals that control qubits. However, implementing a universal quantum computer with a low error rate requires a lot of qubits demands the change of the current control system to be an integrated and miniaturized system that can be operated at low temperatures. In this study, we explore the fundamental units of the control system, describe the problems and alternatives of the current control system, and discuss a future quantum control system.

Quantum Communication Technology for Future ICT - Review

  • Singh, Sushil Kumar;Azzaoui, Abir El;Salim, Mikail Mohammed;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1459-1478
    • /
    • 2020
  • In the last few years, quantum communication technology and services have been developing in various advanced applications to secure the sharing of information from one device to another. It is a classical commercial medium, where several Internet of Things (IoT) devices are connected to information communication technology (ICT) and can communicate the information through quantum systems. Digital communications for future networks face various challenges, including data traffic, low latency, deployment of high-broadband, security, and privacy. Quantum communication, quantum sensors, quantum computing are the solutions to address these issues, as mentioned above. The secure transaction of data is the foremost essential needs for smart advanced applications in the future. In this paper, we proposed a quantum communication model system for future ICT and methodological flow. We show how to use blockchain in quantum computing and quantum cryptography to provide security and privacy in recent information sharing. We also discuss the latest global research trends for quantum communication technology in several countries, including the United States, Canada, the United Kingdom, Korea, and others. Finally, we discuss some open research challenges for quantum communication technology in various areas, including quantum internet and quantum computing.

The Future of Quantum Information: Challenges and Vision

  • Kim, Dohyun;Kang, Jungho;Kim, Tae Woo;Pan, Yi;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.151-162
    • /
    • 2021
  • Quantum information has passed the theoretical research period and has entered the realization step for its application to the information and communications technology (ICT) sector. Currently, quantum information has the advantage of being safer and faster than conventional digital computers. Thus, a lot of research is being done. The amount of big data that one needs to deal with is expected to grow exponentially. It is also a new business model that can change the landscape of the existing computing. Just as the IT sector has faced many challenges in the past, we need to be prepared for change brought about by Quantum. We would like to look at studies on quantum communication, quantum sensing, and quantum computing based on quantum information and see the technology levels of each country and company. Based on this, we present the vision and challenge for quantum information in the future. Our work is significant since the time for first-time study challengers is reduced by discussing the fundamentals of quantum information and summarizing the current situation.

Research on the current state of practical applications and limitations of quantum computing technology

  • Jaehyung, Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2023
  • In this paper, we identify the factors that hinder the application of quantum computing technology to solve meaningful real-world problems, and suggest related research trends and directions. To this end, we summarize the basic knowledge of quantum mechanics from the perspective of computer science, which is necessary to understand the difficulties in applying quantum computing technology, and analyze the currently commercialized quantum computers and quantum programming layers from the literature. Through an analysis of the current status and utilization of cloud-based commercial quantum computing services, we identify four factors that currently hinder the practical application of quantum computing: high barriers to entry for quantum computer programming, constraints on noisy intermediate-scale quantum computers, a still-growing open source ecosystem, and difficulties in simulating realistic problem sizes, and suggest trends and directions for related research. In doing so, it is expected to contribute to laying the groundwork for practical applications of quantum computing technology.

Hierarchical Circuit Visualization for Large-Scale Quantum Computing (대규모 양자컴퓨팅 회로에 대한 계층적 시각화 기법)

  • Kim, JuHwan;Choi, Byung-Soo;Jo, Dongsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.611-613
    • /
    • 2021
  • Recently, research and development of quantum computers, which exceed the limits of classical computers, have been actively carried out in various fields. Quantum computers, which use quantum mechanics principles in a way different from the electrical signal processing of classical computers, have various quantum mechanical phenomena such as quantum superposition and quantum entanglement. It goes through a very complicated calculation process compared to the calculation of a classical computer for performing an operation using its characteristics. In order to utilize each element efficiently and accurately, it is necessary to visualize the data before driving the actual quantum computer and perform error verification, optimization, reliability, and verification. However, when visualizing all the data of various elements configured inside the quantum computer, it is difficult to intuitively grasp the necessary data, so it is necessary to visualize the data selectively. In this paper, we visualize the data of various elements that make up a quantum computer, and hierarchically visualize the internal circuit components of a quantum computer that are complicatedly configured so that the data can be observed and utilized intuitively.

  • PDF

Development of a STEAM Program to Learn the Principles of Quantum Mechanics by applying the Gamification Mechanism (게이미피케이션 메카니즘을 적용한 양자역학 원리를 배우는 STEAM 프로그램 개발)

  • Ko, Daehoon;Park, Namje
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.5
    • /
    • pp.507-518
    • /
    • 2016
  • In this paper, in order to offer the opportunity to indirectly experience STEAM education and the profession of a quantum computer professional, one of computer experts as a promising occupation of the future, its correlation to the national curriculum was analyzed. STEAM educational program in this paper was developed through which the third or fourth graders in elementary schools can learn about a quantum computer expert and think about it in relevance to their future careers. Yet, it's almost impossible for the students to understand the basic theories of quantum computer based on quantum mechanics, one of most difficult areas of physics. Accordingly, in this proposed textbook, gamification mechanism was applied to arouse students' interest. Moreover, the textbook was developed and applied to the field directly in the way that students would be able to indirectly experience quantum spin, one of most basic principles of quantum computer, quantum cryptography related to quantum computer, incomplete quantum computer and etc. The STEAM educational program for future careers offered in this research is expected to create positive effects for students to explore careers relevant to IT, and to develop related qualities.

3D Circuit Visualization for Large-Scale Quantum Computing (대규모 양자컴퓨팅 회로 3차원 시각화 기법)

  • Kim, Juhwan;Choi, Byungsoo;Jo, Dongsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1060-1066
    • /
    • 2021
  • Recently, researches for quantum computers have been carried out in various fields. Quantum computers performs calculations by utilizing various phenomena and characteristics of quantum mechanics such as quantum entanglement and quantum superposition, thus it is a very complex calculation process compared to classical computers used in the past. In order to simulate a quantum computer, many factors and parameters of a quantum computer need to be analyzed, for example, error verification, optimization, and reliability verification. Therefore, it is necessary to visualize circuits that can intuitively simulate the configuration of the quantum computer components. In this paper, we present a novel visualization method for designing complex quantum computer system, and attempt to create a 3D visualization toolkit to deploy large circuits, provide help a new way to design large-scale quantum computing systems that can be built into future computing systems.